Files
ocr/QvqResult.txt
2025-08-14 16:04:59 +08:00

10 lines
762 B
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

【题干】
解:由抛物线 \( y = -x^{2} + 2x + 3 = -(x + 1)(x - 3) \) 可知,点 \( A(-1, 0) \),点 \( B(3, 0) \),点 \( C(0, 3) \)
\(\therefore\) 直线 \( BC \) 的表达式为 \( y = -x + 3 \)
设点 \( P(t, -t^{2} + 2t + 3)(0 < t < 3) \),则 \( D(t, -t + 3) \)
\(\therefore PQ = -t^{2} + 2t + 3 \)\( PD = -t^{2} + 2t + 3 - (-t + 3) = -t^{2} + 3t \)\( QD = -t + 3 \)
\(\because PD = 2QD \)\(\therefore -t^{2} + 3t = 2(-t + 3) \),化简为 \( t^{2} - 5t + 6 = 0 \)\(\therefore t = 2 \) 或 \( t = 3 \)(舍去),
\(\therefore PQ = -t^{2} + 2t + 3 = -2^{2} + 2\times 2 + 3 = 3 \)。
【图形描述】
本题涉及直角坐标系,抛物线 \( y = -x^{2} + 2x + 3 \) 开口向下,经过第一、二、四象限。