Files
ocr/GGB.txt
2025-08-14 16:04:59 +08:00

61 lines
1.5 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### 修正报告
无坐标调整(所有点均严格遵循几何约束和题干坐标)
### 坐标摘要
```
A: (-8, 0)
B: (4, 0)
A₁: (-6, 0)
B₁: (6, 0)
C: (0, -6)
M: (t, t²/6 - 6) [t ∈ (0.1, 5.9)]
Q: (t, 0)
P: (t, t - 6)
```
### Geogebra 指令
```geogebra
ShowAxes(true)
ShowGrid(false)
A = (-8, 0)
B = (4, 0)
A1 = (-6, 0)
B1 = (6, 0)
C = (0, -6)
f(x) = (1 / 6) * (x + 2)^2 - 6
g(x) = (1 / 6) * x^2 - 6
s = Segment(B1, C)
ShowLabel(s, false)
t = Slider(0.1, 5.9, 0.01, 1, 100, false, true, false)
M = (t, g(t))
Q = (t, 0)
P = (t, t - 6)
mq = Segment(M, Q)
ShowLabel(mq, false)
ShowLabel(f, false)
ShowLabel(g, false)
```
### 说明
1. **抛物线计算**
- 由 \( A(-8,0) \) 代入 \( C_1: y = a(x+2)^2 - 6 \) 得 \( a = \frac{1}{6} \)
- \( C_1: y = \frac{1}{6}(x+2)^2 - 6 \)
- \( C_2 \)(右移 2 单位): \( y = \frac{1}{6}x^2 - 6 \)
2. **关键点**
- \( B(4,0) \)(解 \( C_1 \) 与 x 轴交点)
- \( A_1(-6,0), B_1(6,0) \)(解 \( C_2 \) 与 x 轴交点)
- \( C(0,-6) \)\( C_2 \) 与 y 轴交点)
3. **动态点**
- 滑块 `t` 控制点 M 在 \( C_2 \) 第四象限位置
- \( Q(t,0) \) 为 M 在 x 轴的投影
- \( P(t, t-6) \) 为 \( B_1C \) 与垂线 \( x=t \) 的交点
4. **线段处理**
- 线段 \( B_1C \) 和 \( MQ \) 的标签已隐藏
- 抛物线标签已隐藏,避免干扰视图
5. **坐标系**
- 显示坐标轴(符合题干坐标系要求)
- 隐藏网格(保持图形清晰)