【题干】 解:由抛物线 \( y = -x^{2} + 2x + 3 = -(x + 1)(x - 3) \) 可知,点 \( A(-1, 0) \),点 \( B(3, 0) \),点 \( C(0, 3) \), \(\therefore\) 直线 \( BC \) 的表达式为 \( y = -x + 3 \), 设点 \( P(t, -t^{2} + 2t + 3)(0 < t < 3) \),则 \( D(t, -t + 3) \), \(\therefore PQ = -t^{2} + 2t + 3 \),\( PD = -t^{2} + 2t + 3 - (-t + 3) = -t^{2} + 3t \),\( QD = -t + 3 \), \(\because PD = 2QD \),\(\therefore -t^{2} + 3t = 2(-t + 3) \),化简为 \( t^{2} - 5t + 6 = 0 \),\(\therefore t = 2 \) 或 \( t = 3 \)(舍去), \(\therefore PQ = -t^{2} + 2t + 3 = -2^{2} + 2\times 2 + 3 = 3 \)。 【图形描述】 本题涉及直角坐标系,抛物线 \( y = -x^{2} + 2x + 3 \) 开口向下,经过第一、二、四象限。