from openai import OpenAI from utils.image_utils import encode_image # 初始化OpenAI客户端 client = OpenAI( api_key="sk-f6da0c787eff4b0389e4ad03a35a911f", base_url="https://dashscope.aliyuncs.com/compatible-mode/v1" ) base64_image = encode_image(r"D:\ocr\QQ截图20250814093022.jpg") reasoning_content = "" # 定义完整思考过程 answer_content = "" # 定义完整回复 is_answering = False # 判断是否结束思考过程并开始回复 prompt = """ 你是一个初中数学图片的描述专家,请将图片中的内容转换为文本。 1、注意数学公式需要用latex格式输出。注意只输出文本内容,不要输出任何解释。 2、如果图片中有图形,请根据题干对图形进行描述,只要描述不需要任何解释。 3、如果图片中是坐标系,一定要说明抛物线的开口和抛物线经过了几个象限。 4、要以markdown格式输出,注意latex格式两边要加$ 输出格式为 【题干】 【图形描述】 """ # 创建聊天完成请求 completion = client.chat.completions.create( model="qvq-max-latest", # 此处以 qvq-max 为例,可按需更换模型名称 messages=[ { "role": "user", "content": [ { "type": "image_url", "image_url": { # "url": "https://dsideal.obs.cn-north-1.myhuaweicloud.com/wb/img10.jpg" 'url': f'data:image/jpeg;base64,{base64_image}' }, }, {"type": "text", "text": prompt}, ], }, ], stream=True, ) print("\n" + "=" * 20 + "思考过程" + "=" * 20 + "\n") for chunk in completion: # 如果chunk.choices为空,则打印usage if not chunk.choices: print("\nUsage:") print(chunk.usage) else: delta = chunk.choices[0].delta # 打印思考过程 if hasattr(delta, 'reasoning_content') and delta.reasoning_content != None: print(delta.reasoning_content, end='', flush=True) reasoning_content += delta.reasoning_content else: # 开始回复 if delta.content != "" and is_answering is False: print("\n" + "=" * 20 + "完整回复" + "=" * 20 + "\n") is_answering = True # 打印回复过程 print(delta.content, end='', flush=True) answer_content += delta.content # print("=" * 20 + "完整思考过程" + "=" * 20 + "\n") # print(reasoning_content) # print("=" * 20 + "完整回复" + "=" * 20 + "\n") # 保存成QvqResult.txt with open("QvqResult.txt", "w", encoding='utf-8') as f: f.write(answer_content) print("试题解析文本保存成功!")