Files
ocr/Test104.py

78 lines
2.7 KiB
Python
Raw Normal View History

2025-08-14 16:04:59 +08:00
from openai import OpenAI
from utils.image_utils import encode_image
# 初始化OpenAI客户端
client = OpenAI(
api_key="sk-f6da0c787eff4b0389e4ad03a35a911f",
base_url="https://dashscope.aliyuncs.com/compatible-mode/v1"
)
base64_image = encode_image(r"D:\ocr\QQ截图20250814093022.jpg")
reasoning_content = "" # 定义完整思考过程
answer_content = "" # 定义完整回复
is_answering = False # 判断是否结束思考过程并开始回复
prompt = """
你是一个初中数学图片的描述专家请将图片中的内容转换为文本
1注意数学公式需要用latex格式输出注意只输出文本内容不要输出任何解释
2如果图片中有图形请根据题干对图形进行描述只要描述不需要任何解释
3如果图片中是坐标系一定要说明抛物线的开口和抛物线经过了几个象限
4要以markdown格式输出注意latex格式两边要加$
输出格式为
题干
图形描述
"""
# 创建聊天完成请求
completion = client.chat.completions.create(
model="qvq-max-latest", # 此处以 qvq-max 为例,可按需更换模型名称
messages=[
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
# "url": "https://dsideal.obs.cn-north-1.myhuaweicloud.com/wb/img10.jpg"
'url': f'data:image/jpeg;base64,{base64_image}'
},
},
{"type": "text",
"text": prompt},
],
},
],
stream=True,
)
print("\n" + "=" * 20 + "思考过程" + "=" * 20 + "\n")
for chunk in completion:
# 如果chunk.choices为空则打印usage
if not chunk.choices:
print("\nUsage:")
print(chunk.usage)
else:
delta = chunk.choices[0].delta
# 打印思考过程
if hasattr(delta, 'reasoning_content') and delta.reasoning_content != None:
print(delta.reasoning_content, end='', flush=True)
reasoning_content += delta.reasoning_content
else:
# 开始回复
if delta.content != "" and is_answering is False:
print("\n" + "=" * 20 + "完整回复" + "=" * 20 + "\n")
is_answering = True
# 打印回复过程
print(delta.content, end='', flush=True)
answer_content += delta.content
# print("=" * 20 + "完整思考过程" + "=" * 20 + "\n")
# print(reasoning_content)
# print("=" * 20 + "完整回复" + "=" * 20 + "\n")
# 保存成QvqResult.txt
with open("QvqResult.txt", "w", encoding='utf-8') as f:
f.write(answer_content)
print("试题解析文本保存成功!")