Files
ocr/QvqResult.txt

10 lines
762 B
Plaintext
Raw Permalink Normal View History

2025-08-14 16:04:59 +08:00
【题干】
解:由抛物线 \( y = -x^{2} + 2x + 3 = -(x + 1)(x - 3) \) 可知,点 \( A(-1, 0) \),点 \( B(3, 0) \),点 \( C(0, 3) \)
\(\therefore\) 直线 \( BC \) 的表达式为 \( y = -x + 3 \)
设点 \( P(t, -t^{2} + 2t + 3)(0 < t < 3) \),则 \( D(t, -t + 3) \)
\(\therefore PQ = -t^{2} + 2t + 3 \)\( PD = -t^{2} + 2t + 3 - (-t + 3) = -t^{2} + 3t \)\( QD = -t + 3 \)
\(\because PD = 2QD \)\(\therefore -t^{2} + 3t = 2(-t + 3) \),化简为 \( t^{2} - 5t + 6 = 0 \)\(\therefore t = 2 \) 或 \( t = 3 \)(舍去),
\(\therefore PQ = -t^{2} + 2t + 3 = -2^{2} + 2\times 2 + 3 = 3 \)。
【图形描述】
本题涉及直角坐标系,抛物线 \( y = -x^{2} + 2x + 3 \) 开口向下,经过第一、二、四象限。