#if !(PLATFORM_LUMIN && !UNITY_EDITOR) #if !UNITY_WSA_10_0 using System; using System.Collections; using System.Collections.Generic; using System.Linq; using UnityEngine; using UnityEngine.UI; using UnityEngine.SceneManagement; using OpenCVForUnity.CoreModule; using OpenCVForUnity.DnnModule; using OpenCVForUnity.ImgprocModule; using OpenCVForUnity.UnityUtils; using OpenCVForUnity.UnityUtils.Helper; namespace OpenCVForUnityExample { /// /// Dnn ObjectDetection Example /// Referring to https://github.com/opencv/opencv/blob/master/samples/dnn/object_detection.cpp. /// [RequireComponent(typeof(WebCamTextureToMatHelper))] public class DnnObjectDetectionWebCamTextureExample : MonoBehaviour { [TooltipAttribute("Path to a binary file of model contains trained weights. It could be a file with extensions .caffemodel (Caffe), .pb (TensorFlow), .t7 or .net (Torch), .weights (Darknet).")] public string model; [TooltipAttribute("Path to a text file of model contains network configuration. It could be a file with extensions .prototxt (Caffe), .pbtxt (TensorFlow), .cfg (Darknet).")] public string config; [TooltipAttribute("Optional path to a text file with names of classes to label detected objects.")] public string classes; [TooltipAttribute("Optional list of classes to label detected objects.")] public List classesList; [TooltipAttribute("Confidence threshold.")] public float confThreshold; [TooltipAttribute("Non-maximum suppression threshold.")] public float nmsThreshold; [TooltipAttribute("Preprocess input image by multiplying on a scale factor.")] public float scale; [TooltipAttribute("Preprocess input image by subtracting mean values. Mean values should be in BGR order and delimited by spaces.")] public Scalar mean; [TooltipAttribute("Indicate that model works with RGB input images instead BGR ones.")] public bool swapRB; [TooltipAttribute("Preprocess input image by resizing to a specific width.")] public int inpWidth; [TooltipAttribute("Preprocess input image by resizing to a specific height.")] public int inpHeight; /// /// The texture. /// Texture2D texture; /// /// The webcam texture to mat helper. /// WebCamTextureToMatHelper webCamTextureToMatHelper; /// /// The bgr mat. /// Mat bgrMat; /// /// The net. /// Net net; /// /// The FPS monitor. /// FpsMonitor fpsMonitor; List classNames; List outBlobNames; List outBlobTypes; string classes_filepath; string config_filepath; string model_filepath; #if UNITY_WEBGL && !UNITY_EDITOR IEnumerator getFilePath_Coroutine; #endif // Use this for initialization void Start() { fpsMonitor = GetComponent(); webCamTextureToMatHelper = gameObject.GetComponent(); #if UNITY_WEBGL && !UNITY_EDITOR getFilePath_Coroutine = GetFilePath(); StartCoroutine(getFilePath_Coroutine); #else if (!string.IsNullOrEmpty(classes)) classes_filepath = Utils.getFilePath("dnn/" + classes); if (!string.IsNullOrEmpty(config)) config_filepath = Utils.getFilePath("dnn/" + config); if (!string.IsNullOrEmpty(model)) model_filepath = Utils.getFilePath("dnn/" + model); Run(); #endif } #if UNITY_WEBGL && !UNITY_EDITOR private IEnumerator GetFilePath() { if (!string.IsNullOrEmpty(classes)) { var getFilePathAsync_0_Coroutine = Utils.getFilePathAsync("dnn/" + classes, (result) => { classes_filepath = result; }); yield return getFilePathAsync_0_Coroutine; } if (!string.IsNullOrEmpty(config)) { var getFilePathAsync_1_Coroutine = Utils.getFilePathAsync("dnn/" + config, (result) => { config_filepath = result; }); yield return getFilePathAsync_1_Coroutine; } if (!string.IsNullOrEmpty(model)) { var getFilePathAsync_2_Coroutine = Utils.getFilePathAsync("dnn/" + model, (result) => { model_filepath = result; }); yield return getFilePathAsync_2_Coroutine; } getFilePath_Coroutine = null; Run(); } #endif // Use this for initialization void Run() { //if true, The error log of the Native side OpenCV will be displayed on the Unity Editor Console. Utils.setDebugMode(true); if (!string.IsNullOrEmpty(classes)) { classNames = readClassNames(classes_filepath); if (classNames == null) { Debug.LogError(classes_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } } else if (classesList.Count > 0) { classNames = classesList; } if (string.IsNullOrEmpty(config_filepath) || string.IsNullOrEmpty(model_filepath)) { Debug.LogError(config_filepath + " or " + model_filepath + " is not loaded. Please see \"StreamingAssets/dnn/setup_dnn_module.pdf\". "); } else { //! [Initialize network] net = Dnn.readNet(model_filepath, config_filepath); //! [Initialize network] outBlobNames = getOutputsNames(net); //for (int i = 0; i < outBlobNames.Count; i++) //{ // Debug.Log("names [" + i + "] " + outBlobNames[i]); //} outBlobTypes = getOutputsTypes(net); //for (int i = 0; i < outBlobTypes.Count; i++) //{ // Debug.Log("types [" + i + "] " + outBlobTypes[i]); //} } #if UNITY_ANDROID && !UNITY_EDITOR // Avoids the front camera low light issue that occurs in only some Android devices (e.g. Google Pixel, Pixel2). webCamTextureToMatHelper.avoidAndroidFrontCameraLowLightIssue = true; #endif webCamTextureToMatHelper.Initialize(); } /// /// Raises the webcam texture to mat helper initialized event. /// public void OnWebCamTextureToMatHelperInitialized() { Debug.Log("OnWebCamTextureToMatHelperInitialized"); Mat webCamTextureMat = webCamTextureToMatHelper.GetMat(); texture = new Texture2D(webCamTextureMat.cols(), webCamTextureMat.rows(), TextureFormat.RGBA32, false); gameObject.GetComponent().material.mainTexture = texture; gameObject.transform.localScale = new Vector3(webCamTextureMat.cols(), webCamTextureMat.rows(), 1); Debug.Log("Screen.width " + Screen.width + " Screen.height " + Screen.height + " Screen.orientation " + Screen.orientation); if (fpsMonitor != null) { fpsMonitor.Add("width", webCamTextureMat.width().ToString()); fpsMonitor.Add("height", webCamTextureMat.height().ToString()); fpsMonitor.Add("orientation", Screen.orientation.ToString()); } float width = webCamTextureMat.width(); float height = webCamTextureMat.height(); float widthScale = (float)Screen.width / width; float heightScale = (float)Screen.height / height; if (widthScale < heightScale) { Camera.main.orthographicSize = (width * (float)Screen.height / (float)Screen.width) / 2; } else { Camera.main.orthographicSize = height / 2; } bgrMat = new Mat(webCamTextureMat.rows(), webCamTextureMat.cols(), CvType.CV_8UC3); } /// /// Raises the webcam texture to mat helper disposed event. /// public void OnWebCamTextureToMatHelperDisposed() { Debug.Log("OnWebCamTextureToMatHelperDisposed"); if (bgrMat != null) bgrMat.Dispose(); if (texture != null) { Texture2D.Destroy(texture); texture = null; } } /// /// Raises the webcam texture to mat helper error occurred event. /// /// Error code. public void OnWebCamTextureToMatHelperErrorOccurred(WebCamTextureToMatHelper.ErrorCode errorCode) { Debug.Log("OnWebCamTextureToMatHelperErrorOccurred " + errorCode); } // Update is called once per frame void Update() { if (webCamTextureToMatHelper.IsPlaying() && webCamTextureToMatHelper.DidUpdateThisFrame()) { Mat rgbaMat = webCamTextureToMatHelper.GetMat(); if (net == null) { Imgproc.putText(rgbaMat, "model file is not loaded.", new Point(5, rgbaMat.rows() - 30), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); Imgproc.putText(rgbaMat, "Please read console message.", new Point(5, rgbaMat.rows() - 10), Imgproc.FONT_HERSHEY_SIMPLEX, 0.7, new Scalar(255, 255, 255, 255), 2, Imgproc.LINE_AA, false); } else { Imgproc.cvtColor(rgbaMat, bgrMat, Imgproc.COLOR_RGBA2BGR); // Create a 4D blob from a frame. Size inpSize = new Size(inpWidth > 0 ? inpWidth : bgrMat.cols(), inpHeight > 0 ? inpHeight : bgrMat.rows()); Mat blob = Dnn.blobFromImage(bgrMat, scale, inpSize, mean, swapRB, false); // Run a model. net.setInput(blob); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN Imgproc.resize(bgrMat, bgrMat, inpSize); Mat imInfo = new Mat(1, 3, CvType.CV_32FC1); imInfo.put(0, 0, new float[] { (float)inpSize.height, (float)inpSize.width, 1.6f }); net.setInput(imInfo, "im_info"); } TickMeter tm = new TickMeter(); tm.start(); List outs = new List(); net.forward(outs, outBlobNames); tm.stop(); //Debug.Log ("Inference time, ms: " + tm.getTimeMilli ()); postprocess(rgbaMat, outs, net); for (int i = 0; i < outs.Count; i++) { outs[i].Dispose(); } blob.Dispose(); } Utils.fastMatToTexture2D(rgbaMat, texture); } } /// /// Raises the destroy event. /// void OnDestroy() { webCamTextureToMatHelper.Dispose(); if (net != null) net.Dispose(); Utils.setDebugMode(false); #if UNITY_WEBGL && !UNITY_EDITOR if (getFilePath_Coroutine != null) { StopCoroutine(getFilePath_Coroutine); ((IDisposable)getFilePath_Coroutine).Dispose(); } #endif } /// /// Raises the back button click event. /// public void OnBackButtonClick() { SceneManager.LoadScene("OpenCVForUnityExample"); } /// /// Raises the play button click event. /// public void OnPlayButtonClick() { webCamTextureToMatHelper.Play(); } /// /// Raises the pause button click event. /// public void OnPauseButtonClick() { webCamTextureToMatHelper.Pause(); } /// /// Raises the stop button click event. /// public void OnStopButtonClick() { webCamTextureToMatHelper.Stop(); } /// /// Raises the change camera button click event. /// public void OnChangeCameraButtonClick() { webCamTextureToMatHelper.requestedIsFrontFacing = !webCamTextureToMatHelper.IsFrontFacing(); } /// /// Reads the class names. /// /// The class names. /// Filename. private List readClassNames(string filename) { List classNames = new List(); System.IO.StreamReader cReader = null; try { cReader = new System.IO.StreamReader(filename, System.Text.Encoding.Default); while (cReader.Peek() >= 0) { string name = cReader.ReadLine(); classNames.Add(name); } } catch (System.Exception ex) { Debug.LogError(ex.Message); return null; } finally { if (cReader != null) cReader.Close(); } return classNames; } /// /// Postprocess the specified frame, outs and net. /// /// Frame. /// Outs. /// Net. private void postprocess(Mat frame, List outs, Net net) { string outLayerType = outBlobTypes[0]; List classIdsList = new List(); List confidencesList = new List(); List boxesList = new List(); if (net.getLayer(new DictValue(0)).outputNameToIndex("im_info") != -1) { // Faster-RCNN or R-FCN // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] if (outs.Count == 1) { outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7); //Debug.Log ("outs[i].ToString() " + outs [0].ToString ()); float[] data = new float[7]; for (int i = 0; i < outs[0].rows(); i++) { outs[0].get(i, 0, data); float confidence = data[2]; if (confidence > confThreshold) { int class_id = (int)(data[1]); int left = (int)(data[3] * frame.cols()); int top = (int)(data[4] * frame.rows()); int right = (int)(data[5] * frame.cols()); int bottom = (int)(data[6] * frame.rows()); int width = right - left + 1; int height = bottom - top + 1; classIdsList.Add((int)(class_id) - 0); confidencesList.Add((float)confidence); boxesList.Add(new OpenCVForUnity.CoreModule.Rect(left, top, width, height)); } } } } else if (outLayerType == "DetectionOutput") { // Network produces output blob with a shape 1x1xNx7 where N is a number of // detections and an every detection is a vector of values // [batchId, classId, confidence, left, top, right, bottom] if (outs.Count == 1) { outs[0] = outs[0].reshape(1, (int)outs[0].total() / 7); // Debug.Log ("outs[i].ToString() " + outs [0].ToString ()); float[] data = new float[7]; for (int i = 0; i < outs[0].rows(); i++) { outs[0].get(i, 0, data); float confidence = data[2]; if (confidence > confThreshold) { int class_id = (int)(data[1]); int left = (int)(data[3] * frame.cols()); int top = (int)(data[4] * frame.rows()); int right = (int)(data[5] * frame.cols()); int bottom = (int)(data[6] * frame.rows()); int width = right - left + 1; int height = bottom - top + 1; classIdsList.Add((int)(class_id) - 0); confidencesList.Add((float)confidence); boxesList.Add(new OpenCVForUnity.CoreModule.Rect(left, top, width, height)); } } } } else if (outLayerType == "Region") { for (int i = 0; i < outs.Count; ++i) { // Network produces output blob with a shape NxC where N is a number of // detected objects and C is a number of classes + 4 where the first 4 // numbers are [center_x, center_y, width, height] //Debug.Log ("outs[i].ToString() "+outs[i].ToString()); float[] positionData = new float[5]; float[] confidenceData = new float[outs[i].cols() - 5]; for (int p = 0; p < outs[i].rows(); p++) { outs[i].get(p, 0, positionData); outs[i].get(p, 5, confidenceData); int maxIdx = confidenceData.Select((val, idx) => new { V = val, I = idx }).Aggregate((max, working) => (max.V > working.V) ? max : working).I; float confidence = confidenceData[maxIdx]; if (confidence > confThreshold) { int centerX = (int)(positionData[0] * frame.cols()); int centerY = (int)(positionData[1] * frame.rows()); int width = (int)(positionData[2] * frame.cols()); int height = (int)(positionData[3] * frame.rows()); int left = centerX - width / 2; int top = centerY - height / 2; classIdsList.Add(maxIdx); confidencesList.Add((float)confidence); boxesList.Add(new OpenCVForUnity.CoreModule.Rect(left, top, width, height)); } } } } else { Debug.Log("Unknown output layer type: " + outLayerType); } MatOfRect boxes = new MatOfRect(); boxes.fromList(boxesList); MatOfFloat confidences = new MatOfFloat(); confidences.fromList(confidencesList); MatOfInt indices = new MatOfInt(); Dnn.NMSBoxes(boxes, confidences, confThreshold, nmsThreshold, indices); // Debug.Log ("indices.dump () "+indices.dump ()); // Debug.Log ("indices.ToString () "+indices.ToString()); for (int i = 0; i < indices.total(); ++i) { int idx = (int)indices.get(i, 0)[0]; OpenCVForUnity.CoreModule.Rect box = boxesList[idx]; drawPred(classIdsList[idx], confidencesList[idx], box.x, box.y, box.x + box.width, box.y + box.height, frame); } indices.Dispose(); boxes.Dispose(); confidences.Dispose(); } /// /// Draws the pred. /// /// Class identifier. /// Conf. /// Left. /// Top. /// Right. /// Bottom. /// Frame. private void drawPred(int classId, float conf, int left, int top, int right, int bottom, Mat frame) { Imgproc.rectangle(frame, new Point(left, top), new Point(right, bottom), new Scalar(0, 255, 0, 255), 2); string label = conf.ToString(); if (classNames != null && classNames.Count != 0) { if (classId < (int)classNames.Count) { label = classNames[classId] + ": " + label; } } int[] baseLine = new int[1]; Size labelSize = Imgproc.getTextSize(label, Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, 1, baseLine); top = Mathf.Max(top, (int)labelSize.height); Imgproc.rectangle(frame, new Point(left, top - labelSize.height), new Point(left + labelSize.width, top + baseLine[0]), Scalar.all(255), Core.FILLED); Imgproc.putText(frame, label, new Point(left, top), Imgproc.FONT_HERSHEY_SIMPLEX, 0.5, new Scalar(0, 0, 0, 255)); } /// /// Gets the outputs names. /// /// The outputs names. /// Net. private List getOutputsNames(Net net) { List names = new List(); MatOfInt outLayers = net.getUnconnectedOutLayers(); for (int i = 0; i < outLayers.total(); ++i) { names.Add(net.getLayer(new DictValue((int)outLayers.get(i, 0)[0])).get_name()); } outLayers.Dispose(); return names; } /// /// Gets the outputs types. /// /// The outputs types. /// Net. private List getOutputsTypes(Net net) { List types = new List(); MatOfInt outLayers = net.getUnconnectedOutLayers(); for (int i = 0; i < outLayers.total(); ++i) { types.Add(net.getLayer(new DictValue((int)outLayers.get(i, 0)[0])).get_type()); } outLayers.Dispose(); return types; } } } #endif #endif