
RTMP Specification License
Copyright © 2003−2009 Adobe Systems Incorporated. All rights reserved.
Published April 2009

This is a legal agreement (“Agreement”) between the user of the Specification (either an
individual or an entity) (“You”), and Adobe Systems Incorporated (“Adobe”) (collectively the
“Parties”). If You want a license from Adobe to implement the RTMP Specification (as defined
below), You must agree to these terms. This is an offer to be accepted only on the terms set forth
in this Agreement. You accept these terms by accessing, downloading, using, or reviewing the
RTMP Specification. Once accepted, Adobe grants You the license below, provided that You fully
comply with these terms. If You do not agree to these terms, then You are not licensed under this
Agreement. If You attempt to alter or modify these terms, then the offer is no longer valid and is
revoked.

The RTMP Specification provides a protocol for high-performance streaming transmissions of
audio, video, and data content between Adobe Flash Platform technologies. We offer this license
to encourage streaming rich content via the RTMP protocol.

The RTMP Specification may not be copied, photocopied, reproduced, translated, or converted to
any electronic or machine-readable form in whole or in part without written approval from
Adobe. Notwithstanding the foregoing, upon acceptance of the terms of this Agreement, You may
print out one copy of this manual for personal use provided that no part of this manual may be
printed out, reproduced, distributed, resold, or transmitted for any other purposes, including,
without limitation, commercial purposes, such as selling copies of this documentation or
providing paid-for support services.

Definitions
“Compliant Implementation” means the portion of an application, product, or service that
defines, creates or processes data compliant with the requirements expressly stated in the RTMP
Specification.

“Essential Claim” means a claim of a patent that is necessarily infringed in order to achieve a
Compliant Implementation. A claim is necessarily infringed only when there is no technically
reasonable way to avoid infringement of that claim when following the requirements of the
Specification to make a Compliant Implementation.

“RTMP Specification” means the specifications found at http://www.adobe.com/devnet/rtmp/.
Only the RTMP Specification published by Adobe will be considered the RTMP Specification for
purposes of this Agreement. Any specification not published by Adobe or one that incorporates
the RTMP Specification in part, in whole or by reference shall not be considered the RTMP
Specification for purposes of this Agreement.

Patent License
Upon your acceptance of these terms, Adobe grants You a non-exclusive, royalty-free, non-
transferable, non-sublicensable, personal, worldwide license under Adobe’s Essential Claims to
make, have made, use, sell, offer to sell, import and distribute Compliant Implementations.

Prohibited Uses
The rights and licenses granted by Adobe in the RTMP Specification, including those granted in
the Patent License, are conditioned upon Your agreement to use the RTMP Specification for only
streaming video, audio and/or data content and not to make, have made, use, sell, offer to sell,
import or distribute: (i) any technology that intercepts streaming video, audio and/or data
content for storage in any device or medium; or (ii) any technology that circumvents
technological measures for the protection of audio, video and/or data content, including any of
Adobe’s secure RTMP measures. No right or license to any Adobe intellectual property is granted
for such prohibited uses.

Defensive Suspension
If You assert, threaten to assert, or participate in the assertion of a lawsuit, proceeding, claim or
similar action directed either (i) against any other person or entity, including Adobe, claiming
that a Compliant Implementation infringes a patent, or (ii) against Adobe, claiming that any
Adobe product infringes a patent, then Adobe may at its discretion terminate all license grants
and any other rights provided under this Agreement to You.

Reservation of Rights
All rights not expressly granted herein are reserved.

Trademarks
Adobe, ActionScript, and Flash are either registered trademarks or trademarks of Adobe and may
be registered in the United States or in other jurisdictions including internationally. Other
product names, logos, designs, titles, words, or phrases mentioned within this publication may be
trademarks, service marks, or trade names of Adobe or other entities and may be registered in
certain jurisdictions including internationally. No right or license is granted to any Adobe
trademark.

Third-Party Information
This guide contains links to third-party websites that are not under the control of Adobe, and
Adobe is not responsible for the content on any linked site. If You access a third-party website
mentioned in this guide, then You do so at Your own risk. Adobe provides these links only as a
convenience, and the inclusion of the link does not imply that Adobe endorses or accepts any
responsibility for the content on those third-party sites. No right, license or interest is granted in
any third party technology referenced in this guide.

No Warranty
THE RTMP SPECIFICATION AND THE LICENSES GRANTED ABOVE ARE PROVIDED “AS
IS” SUBJECT TO CHANGE BY ADOBE WITHOUT NOTICE, WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT
LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, TITLE OR NON-INFRINGEMENT. NOTHING IN THIS DOCUMENT SHALL BE
CONSTRUED AS A COMMITMENT BY ADOBE INCLUDING A COMMITMENT FOR
MAINTENANCE OF ANY ADOBE PATENT, A WARRANTY OR REPRESENTATION AS TO
THE VALIDITY OR SCOPE OF ANY ADOBE PATENT, AN AGREEMENT TO PROTECT OR
COOPERATE WITH ANY PARTY OR TO BRING OR PROSECUTE ACTIONS AGAINST
ANY PARTY, OR A GRANT OF ANY RIGHT UNDER ANY ADOBE PATENT CLAIM OTHER
THAN AN ESSENTIAL CLAIM. ADOBE SHALL HAVE NO DUTY TO INDEMNIFY, HOLD
HARMLESS OR DEFEND YOU OR ANY THIRD PARTY FROM AND AGAINST ANY LOSS,
DAMAGE, LAWSUITS, PROCEEDINGS, CLAIMS OR SIMILAR ACTIONS THAT ARISE OR
RESULT FROM THE USE OF THE RTMP SPECIFICATION OR THE DEVELOPMENT, USE,
MANUFACTURE, OFFER TO SELL, SALE, IMPORTATION, OR DISTRIBUTION OF ANY
COMPLIANT IMPLEMENTATION.

Limitation Of Liability.
ADOBE SHALL NOT BE LIABLE FOR ANY DAMAGES ARISING FROM OR RELATED TO
THIS AGREEMENT, INCLUDING INDIRECT, INCIDENTAL, CONSEQUENTIAL,
PUNITIVE OR SPECIAL DAMAGES EVEN IF ADOBE HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES IN ADVANCE.

Governing Law
This Agreement shall be construed in accordance with, and all disputes hereunder shall be
governed by, the laws of the State of California. The Parties consent to exclusive jurisdiction and
venue for any dispute hereunder in San Jose, California.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 2]

Real Time Messaging Protocol Chunk Stream
draft-rtmpcs-01.txt

Copyright Notice

Copyright (c) 2009 Adobe Systems Incorporated. All rights reserved.

Abstract

This memo describes the Real Time Messaging Protocol Chunk
Stream(RTMP Chunk Stream), an application-level protocol designed for
multiplexing and packetizing multimedia transport streams (such as
audio, video, and interactive content) over a suitable transport
protocol (such as TCP).

Table of Contents

1. Introduction...4

1.1. Terminology...4
2. Definitions..5
3. Byte Order, Alignment, and Time Format.........................6
4. Message Format...8
5. Handshake..8

5.1. Handshake sequence..9
5.2. C0 and S0 Format..9
5.3. C1 and S1 Format..9
5.4. C2 and S2 Format...10
5.5. Handshake Diagram..12

6. Chunking..13
6.1. Chunk Format...14

6.1.1. Chunk Basic Header..................................15
6.1.2. Chunk Message Header................................16

6.1.2.1. Type 0...17
6.1.2.2. Type 1...17
6.1.2.3. Type 2...18
6.1.2.4. Type 3...18

6.1.3. Extended Timestamp..................................19
6.2. Examples...20

6.2.1. Example 1...20
6.2.2. Example 2...21

7. Protocol Control Messages.....................................22

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 3]

7.1. Set Chunk Size...23
7.2. Abort Message..23

8. References..24
8.1. Normative References.....................................24
8.2. Informative References...................................24

9. Acknowledgments...24

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 4]

1. Introduction

The document specifies the Real Time Messaging Protocol Chunk
Stream(RTMP Chunk Stream). It provides multiplexing and packetizing
services for a higher-level multimedia stream protocol.

While RTMP Chunk Stream was designed to work with the Real Time
Messaging Protocol [RTMP], it can handle any protocol that sends a
stream of messages. Each message contains timestamp and payload type
identification. RTMP Chunk Stream and RTMP together are suitable for
a wide variety of audio-video applications, from one-to-one and one-
to-many live broadcasting to video-on-demand services to interactive
conferencing applications.

When used with a reliable transport protocol such as [TCP], RTMP
Chunk Stream provides guaranteed timestamp-ordered end-to-end
delivery of all messages, across multiple streams. RTMP Chunk Stream
does not provide any prioritization or similar forms of control, but
can be used by higher-level protocols to provide such prioritization.
For example, a live video server might choose to drop video messages
for a slow client to ensure that audio messages are received in a
timely fashion, based on either the time to send or the time to
acknowledge each message.

RTMP Chunk Stream includes its own in-band protocol control messages,
and also offers a mechanism for the higher-level protocol to embed
user control messages.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [BCP14], [RFC2119].

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 5]

2. Definitions

Payload:
The data contained in a packet, for example audio samples or
compressed video data. The payload format and interpretation are
beyond the scope of this document.

Packet:
A data packet consists of fixed header and payload data. Some
underlying protocols may require an encapsulation of the packet to
be defined.

Port:
The "abstraction that transport protocols use to distinguish among
multiple destinations within a given host computer. TCP/IP
protocols identify ports using small positive integers." The
transport selectors (TSEL) used by the OSI transport layer are
equivalent to ports.

Transport address:
The combination of a network address and port that identifies a
transport-level endpoint, for example an IP address and a TCP port.
Packets are transmitted from a source transport address to a
destination transport address.

Message stream:
A logical channel of communication that allows the flow of
messages.

Message stream ID:
Each message has an ID associated with it to identify the message
stream in which it is flowing.

Chunk:

A fragment of a message. The messages are broken into smaller parts
and interleaved before they are sent over the network. The chunks
ensure timestamp-ordered end-to-end delivery of all messages,
across multiple streams.

Chunk stream:

A logical channel of communication that allows flow of chunks in a
particular direction. The chunk stream can travel from the client
to the server and reverse.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 6]

Chunk stream ID:
Every chunk has an ID associated with it to identify the chunk
stream in which it is flowing.

Multiplexing:

Process of making separate audio/video data into one coherent
audio/video stream, making it possible to transmit several video
and audio simultaneously.

DeMultiplexing:
Reverse process of multiplexing, in which interleaved audio and
video data are assembled to form the original audio and video data.

3. Byte Order, Alignment, and Time Format

All integer fields are carried in network byte order, byte zero is
the first byte shown, and bit zero is the most significant bit in a
word or field. This byte order is commonly known as big-endian.
The transmission order is described in detail in [STD5]. Unless
otherwise noted, numeric constants in this document are in decimal
(base 10).

Except as otherwise specified, all data in RTMP Chunk Stream is byte-
aligned; for example, a 16-bit field may be at an odd byte offset.
Where padding is indicated, padding bytes SHOULD have the value zero.

Timestamps in RTMP Chunk Stream are given as an integer number of
milliseconds, relative to an unspecified epoch. Typically, each Chunk
Stream will start with a timestamp of 0, but this is not required, as
long as the two endpoints agree on the epoch. Note that this means
that any synchronization across multiple chunk streams (especially
from separate hosts) requires some additional mechanism outside of
RTMP Chunk Stream.

Timestamps MUST be monotonically increasing, and SHOULD be linear in
time, to allow applications to handle synchronization, bandwidth
measurement, jitter detection, and flow control.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 7]

Because timestamps are generally only 32 bits long, they will roll
over after fewer than 50 days. Because streams are allowed to run
continuously, potentially for years on end, an RTMP Chunk Stream
application MUST use modular arithmetic for subtractions and
comparisons, and SHOULD be capable of handling this wraparound
heuristically. Any reasonable method is acceptable, as long as both
endpoints agree. An application could assume, for example, that all
adjacent timestamps are within 2^31 milliseconds of each other, so
10000 comes after 4000000000, while 3000000000 comes before
4000000000.

Timestamp deltas are also specified as an unsigned integer number of
milliseconds, relative to the previous timestamp. Timestamp deltas
may be either 24 or 32 bits long.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 8]

4. Message Format

The format of a message that can be split into chunks to support
multiplexing, depends on higher level protocol. The message format
SHOULD however contain the following fields which are necessary for
creating the chunks.

Timestamp:

Timestamp of the message. This field can transport 4 bytes.

Length:

Length of the message payload. If the message header cannot be
elided, it should be included in the length. This field occupies 3
bytes in the chunk header.

Type Id:

A range of type IDs are reserved for protocol control messages.
These messages which propagate information are handled by both RTMP
Chunk Stream protocol and the higher-level protocol. All other type
IDs are available for use by the higher-level protocol, and treated
as opaque values by RTMP Chunk Stream. In fact, nothing in RTMP
Chunk Stream requires these values to be used as a type; all (non-
protocol) messages could be of the same type, or the application
could use this field to distinguish simultaneous tracks rather than
types. This field occupies 1 byte in the chunk header.

Message Stream ID:
The message stream ID can be any arbitrary value. Different message
streams multiplexed onto the same chunk stream are demultiplexed
based on their message stream IDs. Beyond that, as far as RTMP
Chunk Stream is concerned, this is an opaque value. This field
occupies 4 bytes in the chunk header in little endian format.

5. Handshake

An RTMP connection begins with a handshake. The handshake is unlike
the rest of the protocol; it consists of three static-sized chunks
rather than consisting of variable-sized chunks with headers.

The client (the endpoint that has initiated the connection) and the
server each send the same three chunks. For exposition, these chunks
will be designated C0, C1, and C2 when sent by the client; S0, S1,
and S2 when sent by the server.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 9]

5.1. Handshake sequence

 The handshake begins with the client sending the C0 and C1 chunks.

The client MUST wait until S1 has been received before sending C2.
The client MUST wait until S2 has been received before sending any
other data.

The server MUST wait until C0 has been received before sending S0 and
S1, and MAY wait until after C1 as well. The server MUST wait until
C1 has been received before sending S2. The server MUST wait until C2
has been received before sending any other data.

5.2. C0 and S0 Format

The C0 and S0 packets are a single octet, treated as a single 8-bit
integer field:

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| version |
+-+-+-+-+-+-+-+-+

Figure 1 C0 and S0 bits

 Following are the fields in the C0/S0 packets:

Version: 8 bits
In C0, this field identifies the RTMP version requested by the
client. In S0, this field identifies the RTMP version selected by
the server. The version defined by this specification is 3. Values
0-2 are deprecated values used by earlier proprietary products; 4-
31 are reserved for future implementations; and 32-255 are not
allowed (to allow distinguishing RTMP from text-based protocols,
which always start with a printable character). A server that does
not recognize the client's requested version SHOULD respond with 3.
The client MAY choose to degrade to version 3, or to abandon the
handshake.

5.3. C1 and S1 Format

The C1 and S1 packets are 1536 octets long, consisting of the
following fields:

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 10]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time (4 bytes) |
+-+
| zero (4 bytes) |
+-+
| random bytes |
+-+
| random bytes |
| (cont) |
| |
+-+

Figure 2 C1 and S1 bits

Time: 4 bytes
This field contains a timestamp, which SHOULD be used as the epoch
for all future chunks sent from this endpoint. This may be 0, or
some arbitrary value. To synchronize multiple chunkstreams, the
endpoint may wish to send the current value of the other
chunkstream's timestamp.

Zero: 4 bytes
 This field MUST be all 0s.

Random data: 1528 bytes

This field can contain any arbitrary values. Since each endpoint
has to distinguish between the response to the handshake it has
initiated and the handshake initiated by its peer,this data SHOULD
send something sufficiently random. But there is no need for
cryptographically-secure randomness, or even dynamic values.

5.4. C2 and S2 Format

The C2 and S2 packets are 1536 octets long, and nearly an echo of S1
and C1 (respectively), consisting of the following fields:

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 11]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time (4 bytes) |
+-+
| time2(4 bytes) |
+-+
| random echo |
+-+
| random echo |
| (cont) |
| |
+-+

Figure 3 C2 and S2 bits

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 12]

Time: 4 bytes
This field MUST contain the timestamp sent by the peer in S1 (for
C2) or C1 (for S2).

Time2: 4 bytes
This field MUST contain the timestamp at which the previous
packet(s1 0r c1) sent by the peer was read.

Random echo: 1528 bytes

This field MUST contain the random data field sent by the peer in
S1 (for C2) or S2 (for C1).
Either peer can use the time and time2 fields together with the
current timestamp as a quick estimate of the bandwidth and/or
latency of the connection, but this is unlikely to be useful.

5.5. Handshake Diagram

+---+
| +-------------+ +-------------+ |
	Client	TCP/IP Network	Server	
+-------------+	+-------------+			
Uninitialized	Uninitialized			
	C0			
	------------------->	C0		
		-------------------->		
	C1			
	------------------->	S0		
		<--------------------		
		S1		
Version sent	<--------------------			
	S0			
	<-------------------			
	S1			
	<-------------------	Version sent		
		C1		
		-------------------->		
	C2			
	------------------->	S2		
		<--------------------		
Ack sent	Ack Sent			
	S2			
	<-------------------			
		C2		
		-------------------->		
Handshake Done	Handshake Done			

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 13]

| | | | |
+---+

Figure 4 Pictorial Representation of Handshake

The following table describes the states mentioned in the hand shake
diagram:

+-------------+--+
| States | Description |
+-------------+--+
Uninitialized	The protocol version is sent during this stage.
	Both the client and server are uninitialized. The
	The client sends the protocol version in packet
	C0. If the server supports the version, it sends
	S0 and S1 in response. If not, the server responds
	by taking the appropriate action. In RTMP,
	this action is terminating the connection.
+-------------+--+	
Version Sent	Both client and server are in the Version Sent
	state after the Uninitialized state. The client is
	waiting for the packet S1 and the server is
	waiting for the packet C1. On receiving the
	awaited packets, the client sends the packet C2
	and the server sends the packet S2. The state then
	becomes Ack Sent.
+-------------+--+	
Ack Sent	The client and the server wait for S2 and C2,
	respectively.
+-------------+--+	
HandshakeDone	The client and the server exchange messages.
+-------------+--+

6. Chunking

After handshaking, the connection multiplexes one or more chunk
streams. Each chunk stream carries messages of one type from one
message stream. Each chunk that is created has a unique ID associated
with it called chunk stream ID. The chunks are transmitted over the
network. While transmitting, each chunk must be sent in full before
the next chunk. At the receiver end, the chunks are assembled into
messages based on the chunk stream ID.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 14]

Chunking allows large messages at the higher-level protocol to be
broken down into smaller messages,for example, to prevent large low-
priority messages from blocking smaller high-priority messages.

Chunking also allows small messages to be sent with less overhead, as
the chunk header contains a compressed representation of information
that would otherwise have to be included in the message itself.

The chunk size is configurable. It can be set using a control
message(Set Chunk Size) as described in section 7.1. The maximum
chunk size can be 65536 bytes and minimum 128 bytes. Larger values
reduce CPU usage, but also commit to larger writes that can delay
other content on lower bandwidth connections. Smaller chunks are not
good for high-bit rate streaming. Chunk size is maintained
independently for each direction.

6.1. Chunk Format

Each chunk consists of a header and data. The header itself is broken
down into three parts:

+-------------+----------------+-------------------+--------------+
| Basic header|Chunk Msg Header|Extended Time Stamp| Chunk Data |
+-------------+----------------+-------------------+--------------+

Figure 5 Chunk Format.

Chunk basic header: 1 to 3 bytes

This field encodes the chunk stream ID and the chunk type. Chunk
type determines the format of the encoded message header. The
length depends entirely on the chunk stream ID, which is a
variable-length field.

Chunk message header: 0, 3, 7, or 11 bytes

This field encodes information about the message being sent
(whether in whole or in part). The length can be determined using
the chunk type specified in the chunk header.

Extended timestamp: 0 or 4 bytes

This field MUST be sent when the normal timsestamp is set to
0xffffff, it MUST NOT be sent if the normal timestamp is set to
anything else. So for values less than 0xffffff the normal
timestamp field SHOULD be used in which case the extended timestamp

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 15]

MUST NOT be present. For values greater than or equal to 0xffffff
the normal timestamp field MUST NOT be used and MUST be set to
0xffffff and the extended timestamp MUST be sent.

6.1.1. Chunk Basic Header

The Chunk Basic Header encodes the chunk stream ID and the chunk
type(represented by fmt field in the figure below). Chunk type
determines the format of the encoded message header. Chunk Basic
Header field may be 1, 2, or 3 bytes, depending on the chunk stream
ID.

An implementation SHOULD use the smallest representation that can
hold the ID.

The protocol supports up to 65597 streams with IDs 3–65599. The IDs
0, 1, and 2 are reserved. Value 0 indicates the ID in the range of
64–319 (the second byte + 64). Value 1 indicates the ID in the range
of 64–65599 ((the third byte)*256 + the second byte + 64). Value 2
indicates its low-level protocol message. There are no additional
bytes for stream IDs. Values in the range of 3–63 represent the
complete stream ID. There are no additional bytes used to represent
it.

The bits 0–5 (least significant) in the chunk basic header represent
the chunk stream ID.

Chunk stream IDs 2-63 can be encoded in the 1-byte version of this
field.

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|fmt| cs id |
+-+-+-+-+-+-+-+-+
Figure 6 Chunk basic header 1

Chunk stream IDs 64-319 can be encoded in the 2-byte version of this
field. ID is computed as (the second byte + 64).

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 16]

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|fmt| 0 | cs id - 64 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7 Chunk basic header 2

Chunk stream IDs 64-65599 can be encoded in the 3-byte version of
this field. ID is computed as ((the third byte)*256 + the second byte
+ 64).

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
|fmt| 1 | cs id - 64 |
+-+

Figure 8 Chunk basic header 3

cs id: 6 bits
This field contains the chunk stream ID, for values from 2-63.
Values 0 and 1 are used to indicate the 2- or 3-byte versions of
this field.

fmt: 2 bits
This field identifies one of four format used by the ‘chunk message
header’.The ‘chunk message header’ for each of the chunk types is
explained in the next section.

cs id - 64: 8 or 16 bits

This field contains the chunk stream ID minus 64. For example, ID
365 would be represented by a 1 in cs id, and a 16-bit 301 here.

Chunk stream IDs with values 64-319 could be represented by both 2-
byte version and 3-byte version of this field.

6.1.2. Chunk Message Header

There are four different formats for the chunk message header,
selected by the "fmt" field in the chunk basic header.

An implementation SHOULD use the most compact representation possible
for each chunk message header.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 17]

6.1.2.1. Type 0

Chunks of Type 0 are 11 bytes long. This type MUST be used at the
start of a chunk stream, and whenever the stream timestamp goes
backward (e.g., because of a backward seek).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| timestamp |message length |
+-+
| message length (cont) |message type id| msg stream id |
+-+
| message stream id (cont) |
+-+

Figure 9 Chunk Message Header – Type 0

timestamp: 3 bytes
For a type-0 chunk, the absolute timestamp of the message is sent
here. If the timestamp is greater than or equal to 16777215
(hexadecimal 0x00ffffff), this value MUST be 16777215, and the
‘extended timestamp header’ MUST be present. Otherwise, this value
SHOULD be the entire timestamp.

6.1.2.2. Type 1

Chunks of Type 1 are 7 bytes long. The message stream ID is not
included; this chunk takes the same stream ID as the preceding chunk.
Streams with variable-sized messages (for example, many video
formats) SHOULD use this format for the first chunk of each new
message after the first.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| timestamp delta |message length |
+-+
| message length (cont) |message type id|
+-+

Figure 10 Chunk Message Header – Type 1

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 18]

6.1.2.3. Type 2

Chunks of Type 2 are 3 bytes long. Neither the stream ID nor the
message length is included; this chunk has the same stream ID and
message length as the preceding chunk. Streams with constant-sized
messages (for example, some audio and data formats) SHOULD use this
format for the first chunk of each message after the first.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
| timestamp delta |
+-+

Figure 11 Chunk Message Header – Type 2

6.1.2.4. Type 3

Chunks of Type 3 have no header. Stream ID, message length and
timestamp delta are not present; chunks of this type take values from
the preceding chunk. When a single message is split into chunks, all
chunks of a message except the first one, SHOULD use this type. Refer
to example 2 in section 6.2.2. Stream consisting of messages of
exactly the same size, stream ID and spacing in time SHOULD use this
type for all chunks after chunk of Type 2. Refer to example 1 in
section 6.2.1. If the delta between the first message and the second
message is same as the time stamp of first message, then chunk of
type 3 would immediately follow the chunk of type 0 as there is no
need for a chunk of type 2 to register the delta. If Type 3 chunk
follows a Type 0 chunk, then timestamp delta for this Type 3 chunk is
the same as the timestamp of Type 0 chunk.

Description of each field in the chunk message header.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 19]

timestamp delta: 3 bytes

For a type-1 or type-2 chunk, the difference between the previous
chunk's timestamp and the current chunk's timestamp is sent here.
If the delta is greater than or equal to 16777215 (hexadecimal
0x00ffffff), this value MUST be 16777215, and the ‘extended
timestamp header’ MUST be present. Otherwise, this value SHOULD be
the entire delta.

message length: 3 bytes

For a type-0 or type-1 chunk, the length of the message is sent
here.

Note that this is generally not the same as the length of the chunk
payload. The chunk payload length is the maximum chunk size for all
but the last chunk, and the remainder (which may be the entire
length, for small messages) for the last chunk.

message type id: 1 byte
 For a type-0 or type-1 chunk, type of the message is sent here.

message stream id: 4 bytes

For a type-0 chunk, the message stream ID is stored. Message stream
ID is stored in little-endian format. Typically, all messages in
the same chunk stream will come from the same message stream. While
it is possible to multiplex separate message streams into the same
chunk stream, this defeats all of the header compression. However,
if one message stream is closed and another one subsequently
opened, there is no reason an existing chunk stream cannot be
reused by sending a new type-0 chunk.

6.1.3. Extended Timestamp

This field is transmitted only when the normal time stamp in the
chunk message header is set to 0x00ffffff. If normal time stamp is
set to any value less than 0x00ffffff, this field MUST NOT be
present. This field MUST NOT be present if the timestamp field is not
present. Type 3 chunks MUST NOT have this field.

This field if transmitted is located immediately after the chunk
message header and before the chunk data.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 20]

+-------------+----------------+-------------------+--------------+
| Basic header|Chunk Msg Header|Extended Time Stamp| Chunk Data |
+-------------+----------------+-------------------+--------------+

Figure 12 Chunk Format.

6.2. Examples

6.2.1. Example 1

Example 1 shows a simple stream of audio messages. This example
demonstrates the redundancy of information.

+---------+-----------------+-----------------+-----------------+
| |Message Stream ID| Message TYpe ID | Time | Length |
+---------+-----------------+-----------------+-------+---------+
| Msg # 1 | 12345 | 8 | 1000 | 32 |
+---------+-----------------+-----------------+-------+---------+
| Msg # 2 | 12345 | 8 | 1020 | 32 |
+---------+-----------------+-----------------+-------+---------+
| Msg # 3 | 12345 | 8 | 1040 | 32 |
+---------+-----------------+-----------------+-------+---------+
| Msg # 4 | 12345 | 8 | 1060 | 32 |
+---------+-----------------+-----------------+-------+---------+

Figure 13 Sample Audio messages to be made into chunks

The next table shows chunks produced in this stream. From message 3
onward, data transmission is optimized. There is only 1 byte of
overhead per message beyond this point.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 21]

+--------+---------+-----+------------+------- ---+------------+
	Chunk	Chunk	Header Data	No.of Bytes	Total No.of
	Stream ID	Type		After	Bytes in the
				Header	Chunk
+--------+---------+-----+------------+-----------+------------+					
Chunk#1	3	0	delta: 1000	32	44
			length: 32,		
			type: 8,		
			stream ID:		
			12345 (11		
			bytes)		
+--------+---------+-----+------------+-----------+------------+					
Chunk#2	3	2	20 (3	32	36
			bytes)		
+--------+---------+-----+----+-------+-----------+------------+					
Chunk#3	3	3	none (0	32	33
			bytes)		
+--------+---------+-----+------------+-----------+------------+					
Chunk#4	3	3	none (0	32	33
			bytes)		
+--------+---------+-----+------------+-----------+------------+

Figure 14 Format of each of the chunks of audio messages above

6.2.2. Example 2

Example 2 illustrates a message that is too long to fit in a 128-
chunk and is broken into several chunks.

+-----------+-------------------+-----------------+-----------------+
| | Message Stream ID | Message TYpe ID | Time | Length |
+-----------+-------------------+-----------------+-----------------+
| Msg # 1 | 12346 | 9 (video) | 1000 | 307 |
+-----------+-------------------+-----------------+-----------------+

Figure 15 Sample Message to be broken to chunks

Here are the chunks that are produced:

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 22]

+-------+------+-----+-------------+-----------+------------+
	Chunk	Chunk	Header	No. of	Total No. of
	Stream	Type	Data	Bytes after	bytes in
	ID			Header	the chunk
+-------+------+-----+-------------+-----------+------------+					
Chunk#1	4	0	delta: 1000	128	140
			length: 307		
			type: 9,		
			stream ID:		
			12346 (11		
			bytes)		
+-------+------+-----+-------------+-----------+------------+					
Chunk#2	4	3	none (0	128	129
			bytes)		
+-------+------+-----+-------------+-----------+------------+					
Chunk#3	4	3	none (0	51	52
			bytes)		
+-------+------+-----+-------------+-----------+------------+

Figure 16 Format of each of the broken chunk.

The header data of chunk 1 specifies that the overall message is 307
bytes.

Notice from the two examples, that chunk type 3 can be used in two
different ways. The first is to specify the continuation of a
message. The second is to specify the beginning of a new message
whose header can be derived from the existing state data.

7. Protocol Control Messages

RTMP Chunk Stream supports some protocol control messages. These
messages contain information required by RTMP Chunk Stream protocol
and will not be propagated to the higher protocol layers. Currently
there are two protocol messages used in RTMP Chunk Stream. One
protocol message is used for setting the chunk size and the other is
used to abort a message due to non-availability of remaining chunks

Protocol control messages SHOULD have message stream ID 0(called as
control stream) and chunk stream ID 2, and are sent with highest
priority.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 23]

Each protocol control message type has a fixed-size payload, and is
always sent in a single chunk.

7.1. Set Chunk Size

Protocol control message 1, Set Chunk Size, is used to notify the
peer about the new maximum chunk size.

A default value can be set for the chunk size, but the client or the
server can change this value and update it to the peer. For example,
suppose a client wants to send 131 bytes of audio data and the chunk
size is 128. In this case, the client can send this protocol message
to the server to notify that the chunk size is set to 131 bytes. The
client can then send the audio data in a single chunk.

The maximum chunk size can be 65536 bytes. The chunk size is
maintained independently for each direction.

7.2. Abort Message

This protocol control message is used to notify the peer if it is
waiting for chunks to complete a message, then to discard the
partially received message over a chunk stream. The peer receives the
chunk stream ID as this protocol message’s payload. An application
may send this message when closing in order to indicate that further
processing of the messages is not required.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 24]

8. References

8.1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Crocker, D. and Overell, P.(Editors), "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, Internet Mail Consortium and
Demon Internet Ltd., November 1997.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2234] Crocker, D. and Overell, P.(Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997.

8.2. Informative References

[3] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in TCP
and Its Effect on Busy Servers", Proc. Infocom 1999 pp. 1573-
1583.

[Fab1999] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in
TCP and Its Effect on Busy Servers", Proc. Infocom 1999 pp.
1573-1583.

9. Acknowledgments

Address:

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704

 RTMP Message Formats June 2009

Adobe Systems Inc. [Page 2]

Real Time Messaging Protocol (RTMP) Message Formats

draft-rtmp-01.txt

Copyright Notice

Copyright (c) 2009 Adobe Systems Incorporated. All rights reserved.

Abstract

This memo describes the Real Time Messaging Protocol, an application-
level protocol designed for multiplexing and packetizing multimedia
transport streams (such as audio, video, and interactive content)
over a suitable transport protocol, such as RTMP chunking stream
protocol.

Table of Contents

1. Introduction...3

1.1. Terminology...3
2. Definitions..3
3. Byte Order, Alignment, and Time Format.........................3
4. RTMP Message Format..4

4.1. Message Header..5
4.2. Message Payload...5

5. Protocol Control Messages......................................5
5.1. Set Chunk Size (1)..6
5.2. Abort Message (2)...6
5.3. Acknowledgement (3).......................................7
5.4. User Control Message (4)..................................7
5.5. Window Acknowledgement Size (5)...........................8
5.6. Set Peer Bandwidth (6)....................................8

6. References...9
6.1. Normative References......................................9
6.2. Informative References....................................9

 RTMP Message Formats June 2009

Adobe Systems Inc. [Page 3]

1. Introduction

The document specifies the Real Time Messaging Protocol, which
specifies the format of the messages that are transferred between
entities on a network using a lower level transport layer.

While RTMP was designed to work with the Real Time Messaging Chunk
Stream Protocol, it can send the messages using any other transport
protocol. RTMP Chunk Stream and RTMP together are suitable for a wide
variety of audio-video applications, from one-to-one and one-to-many
live broadcasting to video-on-demand services to interactive
conferencing applications.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [BCP14], [RFC2119].

2. Definitions

Message stream:
A logical channel of communication in which messages flow.

Message stream ID:

Each message has an ID associated with it to identify the message
stream in which it is flowing.

Payload:

The data contained in a packet, for example audio samples or
compressed video data. The payload format and interpretation are
beyond the scope of this document.

Packet:
A data packet consists of the fixed header and the payload data.
Some underlying protocols may require an encapsulation of the
packet to be defined.

3. Byte Order, Alignment, and Time Format

All integer fields are carried in network byte order, byte zero is
the first byte shown, and bit zero is the most significant bit in a
word or field. This byte order is commonly known as big-endian.
The transmission order is described in detail in [STD5]. Unless
otherwise noted, numeric constants in this document are in decimal
(base 10).

 RTMP Message Formats June 2009

Adobe Systems Inc. [Page 4]

Except as otherwise specified, all data in RTMP is byte-aligned, for
example, a 16-bit field may be at an odd byte offset. Where padding
is indicated, padding bytes SHOULD have the value zero.

Timestamps in RTMP are given as an integer number of milliseconds,
relative to an unspecified epoch. Typically, each message stream will
start with a message having timestamp 0, but this is not required, as
long as the two endpoints agree on the epoch. Note that this means
that any synchronization across multiple streams (especially from
separate hosts) requires some additional mechanism outside of RTMP.

Timestamps MUST be monotonically increasing, and SHOULD be linear in
time, to allow applications to handle synchronization, bandwidth
measurement, jitter detection, and flow control.

Because timestamps are generally only 32 bits long, they will roll
over after fewer than 50 days. Because streams are allowed to run
continuously, potentially for years on end, an RTMP application MUST
use modular arithmetic for subtractions and comparisons, and SHOULD
be capable of handling this wraparound heuristically. Any reasonable
method is acceptable, as long as both endpoints agree. An application
could assume, for example, that all adjacent timestamps are within
2^31 milliseconds of each other, so 10000 comes after 4000000000,
while 3000000000 comes before 4000000000.

Timestamp deltas are also specified as an unsigned integer number of
milliseconds, relative to the previous timestamp. Timestamp deltas
may be either 24 or 32 bits long.

4. RTMP Message Format

The server and the client send RTMP messages over the network to
communicate with each other. The messages could include audio, video,
data, or any other messages.

The RTMP message has two parts, a header and its payload.

 RTMP Message Formats June 2009

Adobe Systems Inc. [Page 5]

4.1. Message Header

The message header contains the following:

Message Type:

One byte field to represent the message type. A range of type IDs
(1-7) are reserved for protocol control messages.

Length:
 Three-byte field that represents the size of the payload in bytes.

It is set in big-endian format.

Timestamp:
 Four-byte field that contains a timestamp of the message.
 The 4 bytes are packed in the big-endian order.

Message Stream Id:

Three-byte field that identifies the stream of the message. These
bytes are set in big-endian format.

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Message Type| Payload length |
| (1 byte) | (3 bytes) |
+-+
| Timestamp |
| (4 bytes) |
+-+
| Stream ID |
| (3 bytes) |
+-+

Figure 1 Message header

4.2. Message Payload

The other part which is the payload is the actual data that is
contained in the message. For example, it could be some audio samples
or compressed video data. The payload format and interpretation are
beyond the scope of this document.

5. Protocol Control Messages

RTMP reserves message type IDs 1-7 for protocol control messages.
These messages contain information needed by the RTM Chunk Stream
protocol or RTMP itself. Protocol messages with IDs 1 & 2 are
reserved for usage with RTM Chunk Stream protocol. Protocol messages

 RTMP Message Formats June 2009

Adobe Systems Inc. [Page 6]

with IDs 3-6 are reserved for usage of RTMP. Protocol message with ID
7 is used between edge server and origin server.

Protocol control messages MUST have message stream ID 0 (called as
control stream) and chunk stream ID 2, and are sent with highest
priority.

Each protocol control message type has a fixed-size payload.

5.1. Set Chunk Size (1)

Protocol control message 1, Set Chunk Size, is used to notify the
peer a new maximum chunk size to use.

The value of the chunk size is carried as 4-byte message payload. A
default value exists for chunk size, but if the sender wants to
change this value it notifies the peer about it through this
protocol message. For example, a client wants to send 131 bytes of
data and the chunk size is at its default value of 128. So every
message from the client gets split into two chunks. The client can
choose to change the chunk size to 131 so that every message get
split into two chunks. The client MUST send this protocol message to
the server to notify that the chunk size is set to 131 bytes.

The maximum chunk size can be 65536 bytes. Chunk size is maintained
independently for server to client communication and client to server
communication.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| chunk size (4 bytes) |
+-+
Figure 2 Pay load for the protocol message ‘Set Chunk Size’

chunk size: 32 bits
This field holds the new chunk size, which will be used for all
future chunks sent by this chunk stream.

5.2. Abort Message (2)

Protocol control message 2, Abort Message, is used to notify the peer
if it is waiting for chunks to complete a message, then to discard
the partially received message over a chunk stream and abort
processing of that message. The peer receives the chunk stream ID of
the message to be discarded as payload of this protocol message. This
message is sent when the sender has sent part of a message, but wants
to tell the receiver that the rest of the message will not be sent.

 RTMP Message Formats June 2009

Adobe Systems Inc. [Page 7]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| chunk stream id (4 bytes) |
+-+
Figure 3 Pay load for the protocol message ‘Abort Message’.

chunk stream ID: 32 bits

This field holds the chunk stream ID, whose message is to be
discarded.

5.3. Acknowledgement (3)

The client or the server sends the acknowledgment to the peer after
receiving bytes equal to the window size. The window size is the
maximum number of bytes that the sender sends without receiving
acknowledgment from the receiver. The server sends the window size to
the client after application connects. This message specifies the
sequence number, which is the number of the bytes received so far.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| sequence number (4 bytes) |
+-+
Figure 4 Pay load for the protocol message ‘Acknowledgement’.

sequence number: 32 bits
This field holds the number of bytes received so far.

5.4. User Control Message (4)

The client or the server sends this message to notify the peer about
the user control events. This message carries Event type and Event
data.

+------------------------------+-------------------------
| Event Type (2- bytes) | Event Data
+------------------------------+-------------------------
Figure 5 Pay load for the ‘User Control Message’.

The first 2 bytes of the message data are used to identify the Event
type. Event type is followed by Event data. Size of Event data field
is variable.

 RTMP Message Formats June 2009

Adobe Systems Inc. [Page 8]

5.5. Window Acknowledgement Size (5)

The client or the server sends this message to inform the peer which
window size to use when sending acknowledgment. For example, a server
expects acknowledgment from the client every time the server sends
bytes equivalent to the window size. The server updates the client
about its window size after successful processing of a connect
request from the client.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Acknowledgement Window size (4 bytes) |
+-+
Figure 6 Pay load for ‘Window Acknowledgement Size’.

5.6. Set Peer Bandwidth (6)

The client or the server sends this message to update the output
bandwidth of the peer. The output bandwidth value is the same as the
window size for the peer. The peer sends ‘Window Acknowledgement
Size’ back if its present window size is different from the one
received in the message.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| Acknowledgement Window size |
+-+
| Limit type |
+-+-+-+-+-+-+-+-+
Figure 7 Pay load for ‘Set Peer Bandwidth’

The sender can mark this message hard (0), soft (1), or dynamic (2)
using the Limit type field. In a hard (0) request, the peer must send
the data in the provided bandwidth. In a soft (1) request, the
bandwidth is at the discretion of the peer and the sender can limit
the bandwidth. In a dynamic (2) request, the bandwidth can be hard or
soft.

 RTMP Message Formats June 2009

Adobe Systems Inc. [Page 9]

6. References

6.1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Crocker, D. and Overell, P. (Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2234] Crocker, D. and Overell, P. (Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997.

6.2. Informative References

[3] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in TCP
and Its Effect on Busy Servers", Proc. Infocom 1999 pp. 1573-
1583.

[Fab1999] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in
TCP and Its Effect on Busy Servers", Proc. Infocom 1999 pp.
1573-1583.

Address:

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 2]

RTMP Commands Messages

draft-rtmpcommandmessages-01.txt

Copyright Notice

Copyright (c) 2009 Adobe Systems Incorporated. All rights reserved.

Abstract

This document describes the different types of messages and commands
that are exchanged between the server and the client to communicate
with each other.

Table of Contents

1. Introduction...4
2. Definitions..4
3. Types of messages..5

3.1. Command message...5
3.2. Data message..5
3.3. Shared object message.....................................5
3.4. Audio message...8
3.5. Video message...8
3.6. Aggregate message...8
3.7. User Control message......................................9

4. Types of commands...11
4.1. NetConnection commands...................................11

4.1.1. connect...12
4.1.2. Call..18
4.1.3. createStream..19

4.2. NetStream commands.......................................20
4.2.1. play..21
4.2.2. play2...26
4.2.3. deleteStream..29
4.2.4. receiveAudio..29
4.2.5. receiveVideo..30
4.2.6. Publish...31
4.2.7. seek..31
4.2.8. pause...32

5. Message exchange example......................................33
5.1. Publish recorded video...................................33
5.2. Broadcasting a shared object message.....................35
5.3. Publish MetaData from recorded stream....................36

6. References..36

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 3]

6.1. Normative References.....................................36
6.2. Informative References...................................37

7. Acknowledgments...37

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 4]

1. Introduction

The different types of messages that are exchanged between the server
and the client include audio messages for sending the audio data,
video messages for sending video data, data messages for sending any
user data, shared object messages, and command messages. Shared
objects messages provide a general purpose way to manage distributed
data among multiple clients and a server.
Command messages carry the AMF encoded commands between the client
and the server. A client or a server can request Remote Procedure
Calls (RPC) over streams that are communicated using the command
messages to the peer.

2. Definitions

Message stream:
A logical channel of communication in which messages flow.

Message stream ID:

Each message has an ID associated with it to identify the message
stream to which it belongs.

Remote Procedure Calls (RPC)

A request that allows a client or a server to call a subroutine or
procedure at the peer end.

Metadata

A description about the data. The metadata of a movie includes the
movie title, duration, date of creation, and so on.

Application instance
The instance of the application at the server with which the
clients connect by sending the connect request.

Action Message Format (AMF)
A compact binary format that is used to serialize ActionScript
object graphs. Formats Specifications:
AMF0(http://opensource.adobe.com/wiki/download/attachments/1114283/
amf0_spec_121207.pdf?version=1) and
AMF3(http://opensource.adobe.com/wiki/download/attachments/1114283/
amf3_spec_05_05_08.pdf?version=1).

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 5]

3. Types of messages

The server and the client send messages over the network to
communicate with each other. The messages can be of any type which
includes audio messages, video messages, command messages, shared
object messages, data messages, and user control messages.

3.1. Command message

Command messages carry the AMF-encoded commands between the client
and the server. These messages have been assigned message type value
of 20 for AMF0 encoding and message type value of 17 for AMF3
encoding. These messages are sent to perform some operations like
connect, createStream, publish, play, pause on the peer. Command
messages like onstatus, result etc. are used to inform the sender
about the status of the requested commands. A command message
consists of command name, transaction ID, and command object that
contains related parameters. A client or a server can request Remote
Procedure Calls (RPC) over streams that are communicated using the
command messages to the peer.

3.2. Data message

The client or the server sends this message to send Metadata or any
user data to the peer. Metadata includes details about the
data(audio, video etc.) like creation time, duration, theme and so
on. These messages have been assigned message type value of 18 for
AMF0 and message type value of 15 for AMF3.

3.3. Shared object message

A shared object is a Flash object (a collection of name value pairs)
that are in synchronization across multiple clients, instances, and
so on. The message types kMsgContainer=19 for AMF0 and
kMsgContainerEx=16 for AMF3 are reserved for shared object events.
Each message can contain multiple events.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 6]

+------+------+-------+-----+-----+------+-----+ - +-----+------+-----+
Header	Shared	Current	Flags	Event	Event	Event		Event	Event	Event
	Object	Version		Type	data	data		Type	data	data
	Name				length				length	
+------+------+-------+-----+-----+------+-----+ - +-----+------+-----+
 | |
 |<- >|
 | AMF Shared Object Message body |

Figure 1 The shared object message format

The following event types are supported:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 7]

+---------------+--+
| Event | Description |
+---------------+--+
| Use(=1) | The client sends this event to inform the server |
| | about the creation of a named shared object. |
+---------------+--+
| Release(=2) | The client sends this event to the server when |
| | the shared object is deleted on the client side. |
+---------------+--+
Request Change	The client sends this event to request that the
(=3)	change the value associated with a named
	parameter of the shared object.
+---------------+--+	
Change (=4)	The server sends this event to notify all
	clients, except the client originating the
	request, of a change in the value of a named
	parameter.
+---------------+--+	
Success (=5)	The server sends this event to the requesting
	client in response to RequestChange event if the
	request is accepted.
+---------------+--+	
SendMessage	The client sends this event to the server to
(=6)	broadcast a message. On receiving this event,
	the server broadcasts a message to all the
	clients, including the sender.
+---------------+--+	
Status (=7)	The server sends this event to notify clients
	about error conditions.
+---------------+--+	
Clear (=8)	The server sends this event to the client to
	clear a shared object. The server also sends
	this event in response to Use event that the
	client sends on connect.
+---------------+--+	
Remove (=9)	The server sends this event to have the client
	delete a slot.
+---------------+--+	
Request Remove	The client sends this event to have the client
(=10)	delete a slot.
+---------------+--+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 8]

| Use Success | The server sends this event to the client on a |
| (=11) | successful connection. |
+---------------+---+

3.4. Audio message

The client or the server sends this message to send audio data to the
peer. The message type value of 8 is reserved for audio messages.

3.5. Video message

The client or the server sends this message to send video data to the
peer. The message type value of 9 is reserved for video messages.
These messages are large and can delay the sending of other type of
messages. To avoid such a situation, the video message is assigned
the lowest priority.

3.6. Aggregate message

An aggregate message is a single message that contains a list of sub-
messages. The message type value of 22 is reserved for aggregate
messages.

 +---------+-------------------------+
 | Header | Aggregate Message body |
 +---------+-------------------------+

Figure 2 The aggregate message format

+--------+-------+---------+--------+-------+---------+ - - - -
|Header 0|Message|Back |Header 1|Message|Back |
| |Data 0 |Pointer 0| |Data 1 |Pointer 1|
+--------+-------+---------+--------+-------+---------+ - - - -

Figure 3 The aggregate message body format

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 9]

The back pointer contains the size of the previous message including
its header. It is included to match the format of FLV file and is
used for backward seek.

Using aggregate messages has several performance benefits:

o The chunk stream can send at most a single complete message
within a chunk. Therefore, increasing the chunk size and using
the aggregate message reduces the number of chunks sent.

o The sub-messages can be stored contiguously in memory. It is
more efficient when making system calls to send the data on
the network.

3.7. User Control message

The client or the server sends this message to notify the peer about
the user control events. For information about the message format,
refer to the User Control Messages section in the RTMP Message
Foramts draft.

The following user control event types are supported:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 10]

+---------------+--+
| Event | Description |
+---------------+--+
Stream Begin	The server sends this event to notify the client
(=0)	that a stream has become functional and can be
	used for communication. By default, this event
	is sent on ID 0 after the application connect
	command is successfully received from the
	client. The event data is 4-byte and represents
	the stream ID of the stream that became
	functional.
+---------------+--+	
Stream EOF	The server sends this event to notify the client
(=1)	that the playback of data is over as requested
	on this stream. No more data is sent without
	issuing additional commands. The client discards
	the messages received for the stream. The
	4 bytes of event data represent the ID of the
	stream on which playback has ended.
+---------------+--+	
StreamDry	The server sends this event to notify the client
(=2)	that there is no more data on the stream. If the
	server does not detect any message for a time
	period, it can notify the subscribed clients
	that the stream is dry. The 4 bytes of event
	data represent the stream ID of the dry stream.
+---------------+--+	
SetBuffer	The client sends this event to inform the server
Length (=3)	of the buffer size (in milliseconds) that is
	used to buffer any data coming over a stream.
	This event is sent before the server starts
	processing the stream. The first 4 bytes of the
	event data represent the stream ID and the next
	4 bytes represent the buffer length, in
	milliseconds.
+---------------+--+	
StreamIs	The server sends this event to notify the client
Recorded (=4)	that the stream is a recorded stream. The
	4 bytes event data represent the stream ID of
	the recorded stream.
+---------------+--+	
PingRequest	The server sends this event to test whether the
(=6)	client is reachable. Event data is a 4-byte
	timestamp, representing the local server time
	when the server dispatched the command. The
	client responds with kMsgPingResponse on
	receiving kMsgPingRequest.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 11]

+---------------+--+
PingResponse	The client sends this event to the server in
(=7)	response to the ping request. The event data is
	a 4-byte timestamp, which was received with the
	kMsgPingRequest request.

+-----------------+--+

4. Types of commands

The client and the server exchange commands which are AMF encoded.
The sender sends a command message that consists of command name,
transaction ID, and command object that contains related parameters.
For example, the connect command contains ‘app’ parameter, which
tells the server application name the client is connected to. The
receiver processes the command and sends back the response with the
same transaction ID. The response string is either _result, _error,
or a method name, for example, verifyClient or contactExternalServer.

A command string of _result or _error signals a response. The
transaction ID indicates the outstanding command to which the
response refers. It is identical to the tag in IMAP and many other
protocols. The method name in the command string indicates that the
sender is trying to run a method on the receiver end.

The following class objects are used to send various commands:

o NetConnection – An object that is a higher-level representation
of connection between the server and the client.

o NetStream – An object that represents the channel over which
audio streams, video streams and other related data are sent.
We also send commands like play , pause etc. which control the
flow of the data.

4.1. NetConnection commands

The NetConnection manages a two-way connection between a client
application and the server. In addition, it provides support for
asynchronous remote method calls.

The following commands can be sent on the NetConnection :

o connect

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 12]

o call

o close

o createStream

4.1.1. connect

The client sends the connect command to the server to request
connection to a server application instance.

The command structure from the client to the server is as follows:

+----------------+---------+---------------------------------------+
| Field Name | Type | Description |
+--------------- +---------+---------------------------------------+
| Command Name | String | Name of the command. Set to “connect”.|
+----------------+---------+---------------------------------------+
| Transaction ID | Number | Always set to 1. |
+----------------+---------+---------------------------------------+
| Command Object | Object | Command information object which has |
| | | the name-value pairs. |
+----------------+---------+---------------------------------------+
| Optional User | Object | Any optional information |
| Arguements | | |
+----------------+---------+---------------------------------------+

Following is the description of the name-value pairs used in Command
Object of the connect command.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 13]

+-----------+--------+-----------------------------+---------------+
| Property | Type | Description | Example Value |
+-----------+--------+-----------------------------+---------------+
| app | String | The Server application name | testapp |
| | | the client is connected to. | |
+-----------+--------+-----------------------------+---------------+
flashver	String	Flash Player version. It is	FMSc/1.0
		the same string as returned	
		by the ApplicationScript	
		getversion () function.	
+-----------+--------+-----------------------------+---------------+			
swfUrl	String	URL of the source SWF file	file://C:/
		making the connection.	FlvPlayer.swf
+-----------+--------+-----------------------------+---------------+			
tcUrl	String	URL of the Server.	rtmp://local
		It has the following format.	host:1935/test
		protocol://servername:port/	app/instance1
		appName/appInstance	
+-----------+--------+-----------------------------+---------------+			
fpad	Boolean	True if proxy is being used.	true or false
+-----------+--------+-----------------------------+---------------+			
audioCodecs	Number	Indicates what audio codecs	SUPPORT_SND
		the client supports.	_MP3
+-----------+--------+-----------------------------+---------------+			
videoCodecs	Number	Indicates what video codecs	SUPPORT_VID
		are supported.	_SORENSON
+-----------+--------+-----------------------------+---------------+			
pageUrl	String	URL of the web page from	http://
		where the SWF file was	somehost/
		loaded.	sample.html
+-----------+--------+-----------------------------+----------------+			
object	Number	AMF encoding method.	kAMF3
Encoding			
+-----------+--------+-----------------------------+----------------+

Values for the audio codecs property:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 14]

+----------------------+----------------------------+--------------+
| Source Code Constant | Usage | Value |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_NONE | Raw sound, no compression | 0x0001 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_ADPCM | ADPCM compression | 0x0002 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_MP3 | mp3 compression | 0x0004 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_INTEL | Not used | 0x0008 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_UNUSED | Not used | 0x0010 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_NELLY8 | NellyMoser at 8-kHz | 0x0020 |
| | compression | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_NELLY | NellyMoser compression | 0x0040 |
| | (5, 11, 22, and 44 kHz) | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_G711A | G711A sound compression | 0x0080 |
| | (Flash Media Server only) | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_G711U | G711U sound compression | 0x0100 |
| | (Flash Media Server only) | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_NELLY16 | NellyMouser at 16-kHz | 0x0200 |
| | compression | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_AAC | Advanced audio coding | 0x0400 |
| | (AAC) codec | |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_SPEEX | Speex Audio | 0x0800 |
+----------------------+----------------------------+--------------+
| SUPPORT_SND_ALL | All RTMP-supported audio | 0x0FFF |
| | codecs | |
+----------------------+----------------------------+--------------+

Values for the videoCodecs Property:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 15]

+----------------------+----------------------------+--------------+
| Source Code Constant | Usage | Value |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_UNUSED | Obsolete value | 0x0001 |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_JPEG | Obsolete value | 0x0002 |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_SORENSON | Sorenson Flash video | 0x0004 |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_HOMEBREW | V1 screen sharing | 0x0008 |
+----------------------+----------------------------+--------------+
| SUPPORT_VID_VP6 (On2)| On2 video (Flash 8+) | 0x0010 |
+----------------------+----------------------------+--------------+
SUPPORT_VID_VP6ALPHA	On2 video with alpha	0x0020
(On2 with alpha	channel	
channel)		
+----------------------+----------------------------+--------------+		
SUPPORT_VID_HOMEBREWV	Screen sharing version 2	0x0040
(screensharing v2)	(Flash 8+)	
+----------------------+----------------------------+--------------+		
SUPPORT_VID_H264	H264 video	0x0080
+----------------------+----------------------------+--------------+		
SUPPORT_VID_ALL	All RTMP-supported video	0x00FF
	codecs	
+----------------------+----------------------------+--------------+

Values for the video function property:

+----------------------+----------------------------+--------------+
| Source Code Constant | Usage | Value |
+----------------------+----------------------------+--------------+
SUPPORT_VID_CLIENT	Indicates that the client	1
_SEEK	can seek frame-accurate	
	on the client	
+----------------------+----------------------------+--------------+

Values for the object encoding property:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 16]

+----------------------+----------------------------+--------------+
| Source Code Constant | Usage | Value |
+----------------------+----------------------------+--------------+
kAMF0	AMF0 object encoding	0
	supported by Flash 6 and	
	later	
+----------------------+----------------------------+--------------+		
kAMF3	AMF3 encoding from	3
	Flash 9 (AS3)	
+----------------------+----------------------------+--------------+
The command structure from server to client is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | _result or _error; indicates whether |
| | | the response is result or error. |
+--------------+----------+--+
Transaction	Number	Transaction ID is 1 for call connect
ID		responses
+--------------+----------+--+		
Properties	Object	Name-value pairs that describe the
		properties(fmsver etc.) of the
		connection.
+--------------+----------+--+		
Information	Object	Name-value pairs that describe the
		response from
		‘level’, ‘description’ are names of few
		among such information.
+--------------+----------+--+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 17]

+--+
| |
| +--------------+ +-------------+ |
	Client			Server	
+------+-------+	+------+------+				
	Handshaking done				
	----------- Command Message(connect) ------->				
	<------- Window Acknowledgement Size --------				
	<----------- Set Peer Bandwidth -------------				
	-------- Window Acknowledgement Size ------->				
	<------ User Control Message(StreamBegin) ---				
	<------------ Command Message ---------------				
	(_result- connect response)				
+--+

Figure 4 Message flow in the connect command

The message flow during the execution of the command is:

o Client sends the connect command to the server to request to
connect with the server application instance.

o After receiving the connect command, the server sends the
protocol message ‘Window Acknowledgement Size’ to the client.
The server also connects to the application mentioned in the
connect command.

o The server sends the protocol message ‘Set Peer Bandwidth’ to
the client.

o The client sends the protocol message ‘Window Acknowledgement
Size’ to the server after processing the protocol message ‘Set
Peer Bandwidth’.

o The server sends an another protocol message of type User
Control Message(StreamBegin) to the client.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 18]

o The server sends the result command message informing the
client of the connection status (success/fail). The command
specifies the transaction ID (always equal to 1 for the connect
command). The message also specifies the properties, such as
Flash Media Server version (string), capabilities (number) In
addition it specificies other connection response related
information like level(string), code(string), description
(string), objectencoding (number)etc.

4.1.2. Call

The call method of the NetConnection object runs remote procedure
calls (RPC) at the receiving end. The called RPC name is passed as a
parameter to the call command.

The command structure from the sender to the receiver is as follows:

+--------------+----------+--+
|Field Name | Type | Description |
+--------------+----------+--+
| Procedure | String | Name of the remote procedure that is |
| Name | | called. |
+--------------+----------+--+
Transaction	Number	If a response is expected we give a
		transaction Id. Else we pass a value of
ID		0
+--------------+----------+--+		
Command	Object	If there exists any command info this
Object		is set, else this is set to null type.
+--------------+----------+--+		
Optional	Object	Any optional arguments to be provided
Arguements		
+--------------+----------+--+

The command structure of the response is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 19]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command. |
| | | |
+--------------+----------+--+
| Transaction | Number | ID of the command, to which the |
| ID | | response belongs to |
+--------------+----------+--+
| Command | Object | If there exists any command info this |
| Object | | is set, else this is set to null type. |
+--------------+----------+--+
| Response | Object | Response from the method that was |
| | | called. |
+--+

4.1.3. createStream

The client sends this command to the server to create a logical
channel for message communication The publishing of audio, video, and
metadata is carried out over stream channel created using the
createStream command.

NetConnection is the default communication channel, which has a
stream ID 0. Protocol and a few command messages, including
createStream, use the default communication channel.

The command structure from the client to the server is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command. Set to |
| | | “createStream”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID of the command. |
| ID | | |
+--------------+----------+--+
| Command | Object | If there exists any command info this |
| Object | | is set, else this is set to null type. |
+--------------+----------+--+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 20]

The command structure from server to client is as follows:
+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | _result or _error; indicates whether |
| | | the response is result or error. |
+--------------+----------+--+
| Transaction | Number | ID of the command that response belongs|
| ID | | to. |
+--------------+----------+--+
| Command | Object | If there exists any command info this |
| Object | | is set, else this is set to null type. |
+--------------+----------+--+
| Stream | Number | The return value is either a stream ID |
| ID | | or an error information object. |
+--------------+----------+--+

4.2. NetStream commands

The NetStream defines the channel through which the streaming audio,
video, and data messages can flow over the NetConnection that
connects the client to the server. A NetConnection object can support
multiple NetStreams for multiple data streams.

The following commands can be sent on the NetStream :

o play

o play2

o deleteStream

o closeStream

o receiveAudio

o receiveVideo

o publish

o seek

o pause

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 21]

4.2.1. play

The client sends this command to the server to play a stream. A
playlist can also be created using this command multiple times.

If you want to create a dynamic playlist that switches among
different live or recorded streams, call play more than once and pass
false for reset each time. Conversely, if you want to play the
specified stream immediately, clearing any other streams that are
queued for play, pass true for reset.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 22]

+--------------+----------+---+
| Field Name | Type | Description |
+--------------+----------+---+
| Command Name | String | Name of the command. Set to “play”. |
+--------------+----------+---+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+---+
| Command | Null | Command information does not exist. |
| Object | | Set to null type. |
+--------------+----------+---+
| Stream Name | String | Name of the stream to play. |

		To play video (FLV) files, specify the
		name of the stream without a file
		extension (for example, "sample"). To
		play back MP3 or ID3 tags, you must
		precede the stream name with mp3:
		(for example, "mp3:sample". To play
		H.264/AAC files, you must precede the
		stream name with mp4: and specify the
		file extension. For example, to play the
		file sample.m4v,specify "mp4:sample.m4v"

| | | |
+--------------+----------+---+
Start	Number	An optional parameter that specifies
		the start time in seconds. The default
		value is -2, which means the subscriber
		first tries to play the live stream
		specified in the Stream Name field. If a
		live stream of that name is not found,it
		plays the recorded stream specified in
		the Stream Name field. If you pass -1
		in the Start field, only the live stream
		specified in the Stream Name field is
		played. If you pass 0 or a positive
		number in the Start field, a recorded
		stream specified in the Stream Name
		field is played beginning from the time
		specified in the Start field. If no
		recorded stream is found, the next item
		in the playlist is played.
+--------------+----------+---+		
Duration	Number	An optional parameter that specifies the
		duration of playback in seconds. The
		default value is -1. The -1 value means

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 23]

		a live stream is played until it is no
		longer available or a recorded stream is
		played until it ends. If u pass 0, it
		plays the single frame since the time
		specified in the Start field from the
		beginning of a recorded stream. It is
		assumed that the value specified in
		the Start field is equal to or greater
		than 0. If you pass a positive number,
		it plays a live stream for
		the time period specified in the
		Duration field. After that it becomes
		available or plays a recorded stream
		for the time specified in the Duration
		field. (If a stream ends before the
		time specified in the Duration field,
		playback ends when the stream ends.)
		If you pass a negative number other
		than -1 in the Duration field, it
		interprets the value as if it were -1.
+--------------+----------+---+		
Reset	Boolean	An optional Boolean value or number
		that specifies whether to flush any
		previous playlist.
+--------------+----------+---+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 24]

The command structure from the server to the client is as follows:
+--------------+----------+---+
| Field Name | Type | Description |
+--------------+----------+---+
Command Name	String	Name of the command. If the play
		command is successful, the command
		name is set to onStatus.
+--------------+----------+---+		
Description	String	If the play command is successful, the
		client receives OnStatus message from
		server which is NetStream.Play.Start.
		If the specified stream is not found ,
		NetStream.Play.StreamNotFound is
		received.
+--------------+----------+---+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 25]

+---+
| +-------------+ +----------+ |
	Play Client			Server	
+------+------+	+-----+----+				
	Handshaking and Application				
	connect done				
---+----	------Command Message(createStream) ----->				
Create					
Stream					
---+----	<---------- Command Message --------------				
	(_result- createStream response)				
---+----	------ Command Message (play) ----------->				
		<------------ SetChunkSize --------------			
		<---- User Control (StreamIsRecorded) ----			
Play					
		<---- UserControl (StreamBegin) ----------			
		<--Command Message(onStatus-play reset) --			
		<--Command Message(onStatus-play start) --			
		<-------------Audio Message---------------			
		<-------------Video Message---------------			
Keep receiving audio and video stream till finishes					

+---+

Figure 5 Message flow in the play command

The message flow during the execution of the command is:

o The client sends the play command after receiving result of the
createStream command as success from the server.

o On receiving the play command, the server sends a protocol
message to set the chunk size.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 26]

o The server sends another protocol message (user control)
specifying the event ‘StreamIsRecorded’ and the stream ID in
that message. The message carries the event type in the first 2
bytes and the stream ID in the last 4 bytes.

o The server sends another protocol message (user control)
specifying the event ‘StreamBegin’, to indicate beginning of
the streaming to the client.

o The server sends OnStatus command messages NetStream.Play.Start
& NetStream.Play.Reset if the play command sent by the client
is successful. NetStream.Play.Reset is sent by the server only
if the play command sent by the client has set the reset flag.
If the stream to be played is not found, the Server sends the
onStatus message NetStream.Play.StreamNotFound.

After this, the server sends audio and video data, which the
client plays.

4.2.2. play2

Unlike the play command, play2 can switch to a different bit rate
stream without changing the timeline of the content played. The
server maintains multiple files for all supported bitrates that the
client can request in play2.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 27]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to “play2”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
Start Time	Object	A AMF encoded object that stores a
		number value. The value in this field
		specifies the beginning position of
		the stream, in seconds. If 0 is passed
		in the Start Time field, the stream is
		played from the current timeline.
+--------------+----------+--+		
oldStreamName	Object	A AMF encoded object that stores a
		string value. Its value is a string
		containing the stream name parameter
		and the old stream name.
+--------------+----------+--+		
Stream Name	Object	A AMF encoded object that stores a
		string value. It stores the name of the
		stream that is played.
+--------------+----------+--+		
Duration	Object	A AMF encoded object that stores a
		number value. The value stored in it
		specifies the total duration of
		playing the stream.
+--------------+----------+--+		
Transition	Object	A AMF encoded object that stores a
		string value. Its value defines the
		playlist transition mode (switch or.
		swap mode)switch:Performs multi-bitrate
		streaming by switching 1-bit rate
		version of a stream to another.
		swap: Replaces the value in
		oldStreamName with the value in
		streamName, and stores the remaining
		playlist queue as is. However, in this
		case, the server does not make any
		assumptions about the content of the
		streams and treats them like different
		content. Hence, it either switches at
		the stream boundary or never.
+--------------+----------+--+

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 28]

The message flow for the command is shown in the following
illustration.

+--+
| +--------------+ +-------------+ |
	Play2 Client			Server	
+--------+-----+	+------+------+				
	Handshaking and Application				
	connect done				
---+----	---- Command Message(createStream) --->				
Create					
Stream					
---+----	<---- Command Message (_result) -------				
---+----	------ Command Message (play) -------->				
		<------------ SetChunkSize ------------			
		<--- UserControl (StreamIsRecorded)----			
Play					
		<------- UserControl (StreamBegin)-----			
		<--Command Message(onStatus-playstart)-			
		<---------- Audio Message -------------			
		<---------- Video Message -------------			
---+----	-------- Command Message(play2) ------>				
		<------- Audio Message (new rate) -----			
Play2					
		<------- Video Message (new rate) -----			
	Keep receiving audio and video stream till finishes				

+--+

Figure 1 Message flow in the play2 command

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 29]

4.2.3. deleteStream

NetStream sends the deleteStream command when the NetStream object is
getting destroyed.

The command structure from the client to the server is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to |
| | | “deleteStream”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
| Stream ID | Number | The ID of the stream that is destroyed |
| | | on the server. |
+--------------+----------+--+
The server does not send any response.

4.2.4. receiveAudio

NetStream sends the receiveAudio message to inform the server whether
to send or not to send the audio to the client.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 30]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to |
| | | “receiveAudio”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
| Bool Flag | Boolean | true or false to indicate whether to |
| | | receive audio or not. |
+--------------+----------+--+
The server does not send any response.

4.2.5. receiveVideo

NetStream sends the receiveVideo message to inform the server whether
to send the video to the client or not.

The command structure from the client to the server is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to |
| | | “receiveVideo”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
| Bool Flag | Boolean | true or false to indicate whether to |
| | | receive video or not. |
+--------------+----------+--+
The server does not send any response.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 31]

4.2.6. Publish

The client sends the publish command to publish a named stream to the
server. Using this name, any client can play this stream and receive
the published audio, video, and data messages.

The command structure from the client to the server is as follows:

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to “publish”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
| Publishing | String | Name with which the stream is |
| Name | | published. |
+--------------+----------+--+
| Publishing | String | Type of publishing. Set to “live”, |
| Type | | “record”, or “append”. |

		record: The stream is published and the
		data is recorded to a new file.The file
		is stored on the server in a
		subdirectory within the directory that
		contains the server application. If the
		file already exists, it is overwritten.
		append: The stream is published and the
		data is appended to a file. If no file
		is found, it is created.
		live: Live data is published without
		recording it in a file.
 +--------------+----------+--+

The server responds with the OnStatus command to mark the beginning
of publish.

4.2.7. seek

The client sends the seek command to seek the offset (in
milliseconds) within a media file or playlist.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 32]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to “seek”. |
+--------------+----------+--+
| Transaction | Number | Transaction ID set to 0. |
| ID | | |
+--------------+----------+--+
| Command | Null | There is no command information object |
| Object | | for this command. Set to null type. |
+--------------+----------+--+
| milliSeconds | Number | Number of milliseconds to seek into |
| | | the playlist. |
+--------------+----------+--+
The server sends a status message NetStream.Seek.Notify when seek is
successful. In failure, it returns an _error message.

4.2.8. pause

The client sends the pause command to tell the server to pause or
start playing.

The command structure from the client to the server is as follows:

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 33]

+--------------+----------+--+
| Field Name | Type | Description |
+--------------+----------+--+
| Command Name | String | Name of the command, set to “pause”. |
+--------------+----------+--+
| Transaction | Number | There is no transaction ID for this |
| ID | | command. Set to 0. |
+--------------+----------+--+
| Command | Null | Command information object does not |
| Object | | exist. Set to null type. |
+--------------+----------+--+
|Pause/Unpause | Boolean | true or false, to indicate pausing or |
| Flag | | resuming play |
+--------------+----------+--+
milliSeconds	Number	Number of milliseconds at which the
		the stream is paused or play resumed.
		This is the current stream time at the
		Client when stream was paused. When the
		playback is resumed, the server will
		only send messages with timestamps
		greater than this value.

 +--------------+----------+--+
The server sends a status message NetStream.Pause.Notify when the
stream is paused. NetStream.Unpause.Notify is sent when a stream in
un-paused. In failure, it returns an _error message.

5. Message exchange example

Here are a few examples to explain message exchange using RTMP.

5.1. Publish recorded video

The example illustrates how a publisher can publish a stream and then
stream the video to the server. Other clients can subscribe to this
published stream and play the video.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 34]

+---+
| +--------------------+ +-----------+ |
	Publisher Client			Server	
+----------+---------+	+-----+-----+				
	Handshaking Done				
---+----	----- Command Message(connect) ----->				
		<----- Window Acknowledge Size ------			
Connect					
		<-------Set Peer BandWidth ----------			
		------ Window Acknowledge Size ----->			
		<------User Control(StreamBegin)-----			
---+----	<---------Command Message -----------				
	(_result- connect response)				
---+----	--- Command Message(createStream)--->				
Create					
Stream					
 ---+---- |<------- Command Message ------------| |
	(_result- createStream response)			
---+----	---- Command Message(publish) ------>			
		<------User Control(StreamBegin)-----		
		-----Data Message (Metadata)-------->		
Publishing		------------ Audio Data ------------>		
Content				
		------------ SetChunkSize ---------->		
		<----------Command Message ----------		
		(_result- publish result)		
		------------- Video Data ----------->		
	Until the stream is complete			
+---+

Figure 1 Message flow in publishing a video stream

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 35]

5.2. Broadcasting a shared object message

The example illustrates the messages that are exchanged during the
creation and changing of shared object. It also illustrates the
process of shared object message broadcasting.

+--+
| +----------+ +----------+ |
	Client			Server	
+-----+----+	+-----+----+				
	Handshaking and Application				
	connect done				
Create and ---+----	---- Shared Object Event(Use)---->				
connect					
Shared Object					
---+----	<---- Shared Object Event---------				

 | | (UseSuccess,Clear) | | |
| | | |
| ---+---- |------ Shared Object Event ------>| |
|Shared object | | (RequestChange) | |
|Set Property | | | |
| ---+---- |<------ Shared Object Event ------| |
| | (Success) | |
| | | |
| ---+---- |------- Shared Object Event ----->| |
| Shared object| | (SendMessage) | |
| Message | | | |
| Broadcast ---+---- |<------- Shared Object Event -----| |
| | (SendMessage) | |
| | | |
| | | |
| |
+--+

Figure 1 Shared object message broadcast

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 36]

5.3. Publish MetaData from recorded stream

This example describes the message exchange for publishing metadata.

+--+
| +------------------+ +---------+ |
	Publisher Client			FMS	
+---------+--------+	+----+----+				
	Handshaking and Application				
	connect done				
---+---	---Command Messsage(createStream) -->				
Create					
Stream					
 ---+--- |<---------Command Message------------| |
	(_result - command response)		
---+---	---- Command Message(publish) ------>		
Publishing			
metadata		<------ UserControl(StreamBegin)-----	
from file			
		-----Data Message (Metadata) ------->	

 +--+
Figure 2 Publishing metadata

6. References

6.1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Crocker, D. and Overell, P.(Editors), "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, Internet Mail Consortium and
Demon Internet Ltd., November 1997.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2234] Crocker, D. and Overell, P.(Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997.

 RTMP Commands Messages June 2009

Adobe Systems Inc. [Page 37]

6.2. Informative References

[3] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in TCP
and Its Effect on Busy Servers", Proc. Infocom 1999 pp. 1573-
1583.

[Fab1999] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in
TCP and Its Effect on Busy Servers", Proc. Infocom 1999 pp.
1573-1583.

7. Acknowledgments

Address:

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704

