
    RTMP Message Formats June 2009 
 

 
Adobe Systems Inc.  [Page 2] 

 
Real Time Messaging Protocol (RTMP) Message Formats 

draft-rtmp-01.txt 

Copyright Notice 

Copyright (c) 2009 Adobe Systems Incorporated. All rights reserved. 

Abstract 

This memo describes the Real Time Messaging Protocol, an application-
level protocol designed for multiplexing and packetizing multimedia 
transport streams (such as audio, video, and interactive content) 
over a suitable transport protocol, such as RTMP chunking stream 
protocol.  

Table of Contents 

 
1. Introduction...................................................3 

1.1. Terminology...............................................3 
2. Definitions....................................................3 
3. Byte Order, Alignment, and Time Format.........................3 
4. RTMP Message Format............................................4 

4.1. Message Header............................................5 
4.2. Message Payload...........................................5 

5. Protocol Control Messages......................................5 
5.1. Set Chunk Size (1)........................................6 
5.2. Abort Message (2).........................................6 
5.3. Acknowledgement (3).......................................7 
5.4. User Control Message (4)..................................7 
5.5. Window Acknowledgement Size (5)...........................8 
5.6. Set Peer Bandwidth (6)....................................8 

6. References.....................................................9 
6.1. Normative References......................................9 
6.2. Informative References....................................9 

 
 

 

 

 



    RTMP Message Formats June 2009 
 

 
Adobe Systems Inc.  [Page 3] 

1. Introduction 

The document specifies the Real Time Messaging Protocol, which 
specifies the format of the messages that are transferred between 
entities on a network using a lower level transport layer. 

While RTMP was designed to work with the Real Time Messaging Chunk 
Stream Protocol, it can send the messages using any other transport 
protocol. RTMP Chunk Stream and RTMP together are suitable for a wide 
variety of audio-video applications, from one-to-one and one-to-many 
live broadcasting to video-on-demand services to interactive 
conferencing applications. 

1.1. Terminology 

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",    
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this    
document are to be interpreted as described in [BCP14], [RFC2119]. 

2. Definitions 

Message stream:  
A logical channel of communication in which messages flow.  

 
Message stream ID:  

Each message has an ID associated with it to identify the message 
stream in which it is flowing.  

 
Payload:  

The data contained in a packet, for example audio samples or 
compressed video data. The payload format and interpretation are 
beyond the scope of this document. 
 

Packet:  
A data packet consists of the fixed header and the payload data. 
Some underlying protocols may require an encapsulation of the 
packet to be defined. 

 

3. Byte Order, Alignment, and Time Format 

All integer fields are carried in network byte order, byte zero is 
the first byte shown, and bit zero is the most significant bit in a 
word or field. This byte order is commonly known as    big-endian. 
The transmission order is described in detail in [STD5]. Unless 
otherwise noted, numeric constants in this document are in decimal 
(base 10). 

 



    RTMP Message Formats June 2009 
 

 
Adobe Systems Inc.  [Page 4] 

Except as otherwise specified, all data in RTMP is byte-aligned, for 
example, a 16-bit field may be at an odd byte offset. Where padding 
is indicated, padding bytes SHOULD have the value zero. 

 

Timestamps in RTMP are given as an integer number of milliseconds, 
relative to an unspecified epoch. Typically, each message stream will 
start with a message having timestamp 0, but this is not required, as 
long as the two endpoints agree on the epoch. Note that this means 
that any synchronization across multiple streams (especially from 
separate hosts) requires some additional mechanism outside of RTMP. 

 

Timestamps MUST be monotonically increasing, and SHOULD be linear in 
time, to allow applications to handle synchronization, bandwidth 
measurement, jitter detection, and flow control. 

 

Because timestamps are generally only 32 bits long, they will roll 
over after fewer than 50 days. Because streams are allowed to run 
continuously, potentially for years on end, an RTMP application MUST 
use modular arithmetic for subtractions and comparisons, and SHOULD 
be capable of handling this wraparound heuristically. Any reasonable 
method is acceptable, as long as both endpoints agree. An application 
could assume, for example, that all adjacent timestamps are within 
2^31 milliseconds of each other, so 10000 comes after 4000000000, 
while 3000000000 comes before 4000000000. 

 

Timestamp deltas are also specified as an unsigned integer number of 
milliseconds, relative to the previous timestamp. Timestamp deltas 
may be either 24 or 32 bits long. 

4. RTMP Message Format 

The server and the client send RTMP messages over the network to 
communicate with each other. The messages could include audio, video, 
data, or any other messages. 

The RTMP message has two parts, a header and its payload. 



    RTMP Message Formats June 2009 
 

 
Adobe Systems Inc.  [Page 5] 

4.1. Message Header 

The message header contains the following: 
 
Message Type:  

One byte field to represent the message type. A range of type IDs 
(1-7) are reserved for protocol control messages. 
 

Length:  
 Three-byte field that represents the size of the payload in bytes. 

It is set in big-endian format. 

Timestamp:  
 Four-byte field that contains a timestamp of the message. 
 The 4 bytes are packed in the big-endian order. 
 

 
Message Stream Id:  

Three-byte field that identifies the stream of the message. These   
bytes are set in big-endian format. 
 
0                   1                   2                   3              
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
| Message Type|                  Payload length               | 
|   (1 byte)  |                   (3 bytes)                   | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                       Timestamp                             | 
|                       (4 bytes)                             | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                Stream ID                      | 
|                (3 bytes)                      | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 
Figure 1 Message header 

4.2. Message Payload 

The other part which is the payload is the actual data that is 
contained in the message. For example, it could be some audio samples 
or compressed video data. The payload format and interpretation are 
beyond the scope of this document. 
 

5. Protocol Control Messages 

RTMP reserves message type IDs 1-7 for protocol control messages. 
These messages contain information needed by the RTM Chunk Stream 
protocol or RTMP itself. Protocol messages with IDs 1 & 2 are 
reserved for usage with RTM Chunk Stream protocol. Protocol messages 



    RTMP Message Formats June 2009 
 

 
Adobe Systems Inc.  [Page 6] 

with IDs 3-6 are reserved for usage of RTMP. Protocol message with ID 
7 is used between edge server and origin server. 

Protocol control messages MUST have message stream ID 0 (called as 
control stream) and chunk stream ID 2, and are sent with highest 
priority. 

Each protocol control message type has a fixed-size payload. 

5.1. Set Chunk Size (1) 

Protocol control message 1, Set Chunk Size, is used to notify the 
peer a new maximum chunk size to use. 

The value of the chunk size is carried as 4-byte message payload. A 
default value exists for chunk size, but if the sender wants to 
change this value it  notifies  the peer about it through this 
protocol message. For example,  a client wants to send 131 bytes of 
data and the chunk size is at its default value of 128. So every 
message from the client gets split into two chunks. The client can 
choose to change the chunk size to 131 so that every message get 
split into two chunks. The client MUST send this protocol message to 
the server to notify that the chunk size is set to 131 bytes.  

The maximum chunk size can be 65536 bytes. Chunk size is maintained 
independently for server to client communication and client to server 
communication. 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                          chunk size (4 bytes)                 | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
Figure 2  Pay load for the protocol message ‘Set Chunk Size’ 

chunk size: 32 bits 
This field holds the new chunk size, which will be used for all 
future chunks sent by this chunk stream.  

 
 

5.2. Abort Message (2) 

Protocol control message 2, Abort Message, is used to notify the peer 
if it is waiting for chunks to complete a message, then to discard 
the partially received message over a chunk stream and abort 
processing of that message. The peer receives the chunk stream ID of 
the message to be discarded as payload of this protocol message. This 
message is sent when the sender has sent part of a message, but wants 
to tell the receiver that the rest of the message will not be sent.  



    RTMP Message Formats June 2009 
 

 
Adobe Systems Inc.  [Page 7] 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                        chunk stream id (4 bytes)              | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
Figure 3  Pay load for the protocol message ‘Abort Message’. 

 
chunk stream ID: 32 bits 

This field holds the chunk stream ID, whose message is to be 
discarded.  

 
5.3. Acknowledgement (3) 

The client or the server sends the acknowledgment to the peer after 
receiving bytes equal to the window size. The window size is the 
maximum number of bytes that the sender sends without receiving 
acknowledgment from the receiver. The server sends the window size to 
the client after application connects. This message specifies the 
sequence number, which is the number of the bytes received so far. 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                        sequence number (4 bytes)              | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
Figure 4  Pay load for the protocol message ‘Acknowledgement’. 

sequence number: 32 bits 
This field holds the number of bytes received so far. 

 

5.4. User Control Message (4) 

The client or the server sends this message to notify the peer about 
the user control events. This message carries Event type and Event 
data. 

+------------------------------+------------------------- 
|     Event Type ( 2- bytes )  | Event Data             
+------------------------------+------------------------- 
Figure 5 Pay load for the ‘User Control Message’. 

 
The first 2 bytes of the message data are used to identify the Event 
type. Event type is followed by Event data. Size of Event data field 
is variable.  

 



    RTMP Message Formats June 2009 
 

 
Adobe Systems Inc.  [Page 8] 

 

5.5. Window Acknowledgement Size (5) 

The client or the server sends this message to inform the peer which 
window size to use when sending acknowledgment. For example, a server 
expects acknowledgment from the client every time the server sends 
bytes equivalent to the window size. The server updates the client 
about its window size after successful processing of a connect 
request from the client. 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                   Acknowledgement Window size (4 bytes)       | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
Figure 6  Pay load for ‘Window Acknowledgement Size’. 

5.6. Set Peer Bandwidth (6) 

The client or the server sends this message to update the output 
bandwidth of the peer. The output bandwidth value is the same as the 
window size for the peer. The peer sends ‘Window Acknowledgement 
Size’ back if its present window size is different from the one 
received in the message. 

 0                   1                   2                   3 
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|                   Acknowledgement Window size                 | 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
|  Limit type   | 
+-+-+-+-+-+-+-+-+ 
Figure 7  Pay load for ‘Set Peer Bandwidth’ 

The sender can mark this message hard (0), soft (1), or dynamic (2) 
using the Limit type field. In a hard (0) request, the peer must send 
the data in the provided bandwidth. In a soft (1) request, the 
bandwidth is at the discretion of the peer and the sender can limit 
the bandwidth. In a dynamic (2) request, the bandwidth can be hard or 
soft. 

 



    RTMP Message Formats June 2009 
 

 
Adobe Systems Inc.  [Page 9] 

6. References 

6.1. Normative References 

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement 
Levels", BCP 14, RFC 2119, March 1997. 

[2] Crocker, D. and Overell, P. (Editors), "Augmented BNF for 
Syntax Specifications: ABNF", RFC 2234, Internet Mail 
Consortium and Demon Internet Ltd., November 1997. 

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate 
Requirement Levels", BCP 14, RFC 2119, March 1997. 

[RFC2234] Crocker, D. and Overell, P. (Editors), "Augmented BNF for 
Syntax Specifications: ABNF", RFC 2234, Internet Mail 
Consortium and Demon Internet Ltd., November 1997. 

6.2. Informative References 

[3] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in TCP 
and Its Effect on Busy Servers", Proc. Infocom 1999 pp. 1573-
1583. 

[Fab1999] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in 
TCP and Its Effect on Busy Servers", Proc. Infocom 1999 pp. 
1573-1583. 

Address: 

Adobe Systems Incorporated 
345 Park Avenue 
San Jose, CA 95110-2704 

 




