
Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 2]

Real Time Messaging Protocol Chunk Stream
draft-rtmpcs-01.txt

Copyright Notice

Copyright (c) 2009 Adobe Systems Incorporated. All rights reserved.

Abstract

This memo describes the Real Time Messaging Protocol Chunk
Stream(RTMP Chunk Stream), an application-level protocol designed for
multiplexing and packetizing multimedia transport streams (such as
audio, video, and interactive content) over a suitable transport
protocol (such as TCP).

Table of Contents

1. Introduction...4

1.1. Terminology...4
2. Definitions..5
3. Byte Order, Alignment, and Time Format.........................6
4. Message Format...8
5. Handshake..8

5.1. Handshake sequence..9
5.2. C0 and S0 Format..9
5.3. C1 and S1 Format..9
5.4. C2 and S2 Format...10
5.5. Handshake Diagram..12

6. Chunking..13
6.1. Chunk Format...14

6.1.1. Chunk Basic Header..................................15
6.1.2. Chunk Message Header................................16

6.1.2.1. Type 0...17
6.1.2.2. Type 1...17
6.1.2.3. Type 2...18
6.1.2.4. Type 3...18

6.1.3. Extended Timestamp..................................19
6.2. Examples...20

6.2.1. Example 1...20
6.2.2. Example 2...21

7. Protocol Control Messages.....................................22

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 3]

7.1. Set Chunk Size...23
7.2. Abort Message..23

8. References..24
8.1. Normative References.....................................24
8.2. Informative References...................................24

9. Acknowledgments...24

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 4]

1. Introduction

The document specifies the Real Time Messaging Protocol Chunk
Stream(RTMP Chunk Stream). It provides multiplexing and packetizing
services for a higher-level multimedia stream protocol.

While RTMP Chunk Stream was designed to work with the Real Time
Messaging Protocol [RTMP], it can handle any protocol that sends a
stream of messages. Each message contains timestamp and payload type
identification. RTMP Chunk Stream and RTMP together are suitable for
a wide variety of audio-video applications, from one-to-one and one-
to-many live broadcasting to video-on-demand services to interactive
conferencing applications.

When used with a reliable transport protocol such as [TCP], RTMP
Chunk Stream provides guaranteed timestamp-ordered end-to-end
delivery of all messages, across multiple streams. RTMP Chunk Stream
does not provide any prioritization or similar forms of control, but
can be used by higher-level protocols to provide such prioritization.
For example, a live video server might choose to drop video messages
for a slow client to ensure that audio messages are received in a
timely fashion, based on either the time to send or the time to
acknowledge each message.

RTMP Chunk Stream includes its own in-band protocol control messages,
and also offers a mechanism for the higher-level protocol to embed
user control messages.

1.1. Terminology

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [BCP14], [RFC2119].

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 5]

2. Definitions

Payload:
The data contained in a packet, for example audio samples or
compressed video data. The payload format and interpretation are
beyond the scope of this document.

Packet:
A data packet consists of fixed header and payload data. Some
underlying protocols may require an encapsulation of the packet to
be defined.

Port:
The "abstraction that transport protocols use to distinguish among
multiple destinations within a given host computer. TCP/IP
protocols identify ports using small positive integers." The
transport selectors (TSEL) used by the OSI transport layer are
equivalent to ports.

Transport address:
The combination of a network address and port that identifies a
transport-level endpoint, for example an IP address and a TCP port.
Packets are transmitted from a source transport address to a
destination transport address.

Message stream:
A logical channel of communication that allows the flow of
messages.

Message stream ID:
Each message has an ID associated with it to identify the message
stream in which it is flowing.

Chunk:

A fragment of a message. The messages are broken into smaller parts
and interleaved before they are sent over the network. The chunks
ensure timestamp-ordered end-to-end delivery of all messages,
across multiple streams.

Chunk stream:

A logical channel of communication that allows flow of chunks in a
particular direction. The chunk stream can travel from the client
to the server and reverse.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 6]

Chunk stream ID:
Every chunk has an ID associated with it to identify the chunk
stream in which it is flowing.

Multiplexing:

Process of making separate audio/video data into one coherent
audio/video stream, making it possible to transmit several video
and audio simultaneously.

DeMultiplexing:
Reverse process of multiplexing, in which interleaved audio and
video data are assembled to form the original audio and video data.

3. Byte Order, Alignment, and Time Format

All integer fields are carried in network byte order, byte zero is
the first byte shown, and bit zero is the most significant bit in a
word or field. This byte order is commonly known as big-endian.
The transmission order is described in detail in [STD5]. Unless
otherwise noted, numeric constants in this document are in decimal
(base 10).

Except as otherwise specified, all data in RTMP Chunk Stream is byte-
aligned; for example, a 16-bit field may be at an odd byte offset.
Where padding is indicated, padding bytes SHOULD have the value zero.

Timestamps in RTMP Chunk Stream are given as an integer number of
milliseconds, relative to an unspecified epoch. Typically, each Chunk
Stream will start with a timestamp of 0, but this is not required, as
long as the two endpoints agree on the epoch. Note that this means
that any synchronization across multiple chunk streams (especially
from separate hosts) requires some additional mechanism outside of
RTMP Chunk Stream.

Timestamps MUST be monotonically increasing, and SHOULD be linear in
time, to allow applications to handle synchronization, bandwidth
measurement, jitter detection, and flow control.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 7]

Because timestamps are generally only 32 bits long, they will roll
over after fewer than 50 days. Because streams are allowed to run
continuously, potentially for years on end, an RTMP Chunk Stream
application MUST use modular arithmetic for subtractions and
comparisons, and SHOULD be capable of handling this wraparound
heuristically. Any reasonable method is acceptable, as long as both
endpoints agree. An application could assume, for example, that all
adjacent timestamps are within 2^31 milliseconds of each other, so
10000 comes after 4000000000, while 3000000000 comes before
4000000000.

Timestamp deltas are also specified as an unsigned integer number of
milliseconds, relative to the previous timestamp. Timestamp deltas
may be either 24 or 32 bits long.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 8]

4. Message Format

The format of a message that can be split into chunks to support
multiplexing, depends on higher level protocol. The message format
SHOULD however contain the following fields which are necessary for
creating the chunks.

Timestamp:

Timestamp of the message. This field can transport 4 bytes.

Length:

Length of the message payload. If the message header cannot be
elided, it should be included in the length. This field occupies 3
bytes in the chunk header.

Type Id:

A range of type IDs are reserved for protocol control messages.
These messages which propagate information are handled by both RTMP
Chunk Stream protocol and the higher-level protocol. All other type
IDs are available for use by the higher-level protocol, and treated
as opaque values by RTMP Chunk Stream. In fact, nothing in RTMP
Chunk Stream requires these values to be used as a type; all (non-
protocol) messages could be of the same type, or the application
could use this field to distinguish simultaneous tracks rather than
types. This field occupies 1 byte in the chunk header.

Message Stream ID:
The message stream ID can be any arbitrary value. Different message
streams multiplexed onto the same chunk stream are demultiplexed
based on their message stream IDs. Beyond that, as far as RTMP
Chunk Stream is concerned, this is an opaque value. This field
occupies 4 bytes in the chunk header in little endian format.

5. Handshake

An RTMP connection begins with a handshake. The handshake is unlike
the rest of the protocol; it consists of three static-sized chunks
rather than consisting of variable-sized chunks with headers.

The client (the endpoint that has initiated the connection) and the
server each send the same three chunks. For exposition, these chunks
will be designated C0, C1, and C2 when sent by the client; S0, S1,
and S2 when sent by the server.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 9]

5.1. Handshake sequence

 The handshake begins with the client sending the C0 and C1 chunks.

The client MUST wait until S1 has been received before sending C2.
The client MUST wait until S2 has been received before sending any
other data.

The server MUST wait until C0 has been received before sending S0 and
S1, and MAY wait until after C1 as well. The server MUST wait until
C1 has been received before sending S2. The server MUST wait until C2
has been received before sending any other data.

5.2. C0 and S0 Format

The C0 and S0 packets are a single octet, treated as a single 8-bit
integer field:

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
| version |
+-+-+-+-+-+-+-+-+

Figure 1 C0 and S0 bits

 Following are the fields in the C0/S0 packets:

Version: 8 bits
In C0, this field identifies the RTMP version requested by the
client. In S0, this field identifies the RTMP version selected by
the server. The version defined by this specification is 3. Values
0-2 are deprecated values used by earlier proprietary products; 4-
31 are reserved for future implementations; and 32-255 are not
allowed (to allow distinguishing RTMP from text-based protocols,
which always start with a printable character). A server that does
not recognize the client's requested version SHOULD respond with 3.
The client MAY choose to degrade to version 3, or to abandon the
handshake.

5.3. C1 and S1 Format

The C1 and S1 packets are 1536 octets long, consisting of the
following fields:

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 10]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time (4 bytes) |
+-+
| zero (4 bytes) |
+-+
| random bytes |
+-+
| random bytes |
| (cont) |
| |
+-+

Figure 2 C1 and S1 bits

Time: 4 bytes
This field contains a timestamp, which SHOULD be used as the epoch
for all future chunks sent from this endpoint. This may be 0, or
some arbitrary value. To synchronize multiple chunkstreams, the
endpoint may wish to send the current value of the other
chunkstream's timestamp.

Zero: 4 bytes
 This field MUST be all 0s.

Random data: 1528 bytes

This field can contain any arbitrary values. Since each endpoint
has to distinguish between the response to the handshake it has
initiated and the handshake initiated by its peer,this data SHOULD
send something sufficiently random. But there is no need for
cryptographically-secure randomness, or even dynamic values.

5.4. C2 and S2 Format

The C2 and S2 packets are 1536 octets long, and nearly an echo of S1
and C1 (respectively), consisting of the following fields:

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 11]

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| time (4 bytes) |
+-+
| time2(4 bytes) |
+-+
| random echo |
+-+
| random echo |
| (cont) |
| |
+-+

Figure 3 C2 and S2 bits

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 12]

Time: 4 bytes
This field MUST contain the timestamp sent by the peer in S1 (for
C2) or C1 (for S2).

Time2: 4 bytes
This field MUST contain the timestamp at which the previous
packet(s1 0r c1) sent by the peer was read.

Random echo: 1528 bytes

This field MUST contain the random data field sent by the peer in
S1 (for C2) or S2 (for C1).
Either peer can use the time and time2 fields together with the
current timestamp as a quick estimate of the bandwidth and/or
latency of the connection, but this is unlikely to be useful.

5.5. Handshake Diagram

+---+
| +-------------+ +-------------+ |
	Client	TCP/IP Network	Server	
+-------------+	+-------------+			
Uninitialized	Uninitialized			
	C0			
	------------------->	C0		
		-------------------->		
	C1			
	------------------->	S0		
		<--------------------		
		S1		
Version sent	<--------------------			
	S0			
	<-------------------			
	S1			
	<-------------------	Version sent		
		C1		
		-------------------->		
	C2			
	------------------->	S2		
		<--------------------		
Ack sent	Ack Sent			
	S2			
	<-------------------			
		C2		
		-------------------->		
Handshake Done	Handshake Done			

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 13]

| | | | |
+---+

Figure 4 Pictorial Representation of Handshake

The following table describes the states mentioned in the hand shake
diagram:

+-------------+--+
| States | Description |
+-------------+--+
Uninitialized	The protocol version is sent during this stage.
	Both the client and server are uninitialized. The
	The client sends the protocol version in packet
	C0. If the server supports the version, it sends
	S0 and S1 in response. If not, the server responds
	by taking the appropriate action. In RTMP,
	this action is terminating the connection.
+-------------+--+	
Version Sent	Both client and server are in the Version Sent
	state after the Uninitialized state. The client is
	waiting for the packet S1 and the server is
	waiting for the packet C1. On receiving the
	awaited packets, the client sends the packet C2
	and the server sends the packet S2. The state then
	becomes Ack Sent.
+-------------+--+	
Ack Sent	The client and the server wait for S2 and C2,
	respectively.
+-------------+--+	
HandshakeDone	The client and the server exchange messages.
+-------------+--+

6. Chunking

After handshaking, the connection multiplexes one or more chunk
streams. Each chunk stream carries messages of one type from one
message stream. Each chunk that is created has a unique ID associated
with it called chunk stream ID. The chunks are transmitted over the
network. While transmitting, each chunk must be sent in full before
the next chunk. At the receiver end, the chunks are assembled into
messages based on the chunk stream ID.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 14]

Chunking allows large messages at the higher-level protocol to be
broken down into smaller messages,for example, to prevent large low-
priority messages from blocking smaller high-priority messages.

Chunking also allows small messages to be sent with less overhead, as
the chunk header contains a compressed representation of information
that would otherwise have to be included in the message itself.

The chunk size is configurable. It can be set using a control
message(Set Chunk Size) as described in section 7.1. The maximum
chunk size can be 65536 bytes and minimum 128 bytes. Larger values
reduce CPU usage, but also commit to larger writes that can delay
other content on lower bandwidth connections. Smaller chunks are not
good for high-bit rate streaming. Chunk size is maintained
independently for each direction.

6.1. Chunk Format

Each chunk consists of a header and data. The header itself is broken
down into three parts:

+-------------+----------------+-------------------+--------------+
| Basic header|Chunk Msg Header|Extended Time Stamp| Chunk Data |
+-------------+----------------+-------------------+--------------+

Figure 5 Chunk Format.

Chunk basic header: 1 to 3 bytes

This field encodes the chunk stream ID and the chunk type. Chunk
type determines the format of the encoded message header. The
length depends entirely on the chunk stream ID, which is a
variable-length field.

Chunk message header: 0, 3, 7, or 11 bytes

This field encodes information about the message being sent
(whether in whole or in part). The length can be determined using
the chunk type specified in the chunk header.

Extended timestamp: 0 or 4 bytes

This field MUST be sent when the normal timsestamp is set to
0xffffff, it MUST NOT be sent if the normal timestamp is set to
anything else. So for values less than 0xffffff the normal
timestamp field SHOULD be used in which case the extended timestamp

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 15]

MUST NOT be present. For values greater than or equal to 0xffffff
the normal timestamp field MUST NOT be used and MUST be set to
0xffffff and the extended timestamp MUST be sent.

6.1.1. Chunk Basic Header

The Chunk Basic Header encodes the chunk stream ID and the chunk
type(represented by fmt field in the figure below). Chunk type
determines the format of the encoded message header. Chunk Basic
Header field may be 1, 2, or 3 bytes, depending on the chunk stream
ID.

An implementation SHOULD use the smallest representation that can
hold the ID.

The protocol supports up to 65597 streams with IDs 3–65599. The IDs
0, 1, and 2 are reserved. Value 0 indicates the ID in the range of
64–319 (the second byte + 64). Value 1 indicates the ID in the range
of 64–65599 ((the third byte)*256 + the second byte + 64). Value 2
indicates its low-level protocol message. There are no additional
bytes for stream IDs. Values in the range of 3–63 represent the
complete stream ID. There are no additional bytes used to represent
it.

The bits 0–5 (least significant) in the chunk basic header represent
the chunk stream ID.

Chunk stream IDs 2-63 can be encoded in the 1-byte version of this
field.

 0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+
|fmt| cs id |
+-+-+-+-+-+-+-+-+
Figure 6 Chunk basic header 1

Chunk stream IDs 64-319 can be encoded in the 2-byte version of this
field. ID is computed as (the second byte + 64).

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 16]

 0 1
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|fmt| 0 | cs id - 64 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7 Chunk basic header 2

Chunk stream IDs 64-65599 can be encoded in the 3-byte version of
this field. ID is computed as ((the third byte)*256 + the second byte
+ 64).

 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
|fmt| 1 | cs id - 64 |
+-+

Figure 8 Chunk basic header 3

cs id: 6 bits
This field contains the chunk stream ID, for values from 2-63.
Values 0 and 1 are used to indicate the 2- or 3-byte versions of
this field.

fmt: 2 bits
This field identifies one of four format used by the ‘chunk message
header’.The ‘chunk message header’ for each of the chunk types is
explained in the next section.

cs id - 64: 8 or 16 bits

This field contains the chunk stream ID minus 64. For example, ID
365 would be represented by a 1 in cs id, and a 16-bit 301 here.

Chunk stream IDs with values 64-319 could be represented by both 2-
byte version and 3-byte version of this field.

6.1.2. Chunk Message Header

There are four different formats for the chunk message header,
selected by the "fmt" field in the chunk basic header.

An implementation SHOULD use the most compact representation possible
for each chunk message header.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 17]

6.1.2.1. Type 0

Chunks of Type 0 are 11 bytes long. This type MUST be used at the
start of a chunk stream, and whenever the stream timestamp goes
backward (e.g., because of a backward seek).

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| timestamp |message length |
+-+
| message length (cont) |message type id| msg stream id |
+-+
| message stream id (cont) |
+-+

Figure 9 Chunk Message Header – Type 0

timestamp: 3 bytes
For a type-0 chunk, the absolute timestamp of the message is sent
here. If the timestamp is greater than or equal to 16777215
(hexadecimal 0x00ffffff), this value MUST be 16777215, and the
‘extended timestamp header’ MUST be present. Otherwise, this value
SHOULD be the entire timestamp.

6.1.2.2. Type 1

Chunks of Type 1 are 7 bytes long. The message stream ID is not
included; this chunk takes the same stream ID as the preceding chunk.
Streams with variable-sized messages (for example, many video
formats) SHOULD use this format for the first chunk of each new
message after the first.

 0 1 2 3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| timestamp delta |message length |
+-+
| message length (cont) |message type id|
+-+

Figure 10 Chunk Message Header – Type 1

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 18]

6.1.2.3. Type 2

Chunks of Type 2 are 3 bytes long. Neither the stream ID nor the
message length is included; this chunk has the same stream ID and
message length as the preceding chunk. Streams with constant-sized
messages (for example, some audio and data formats) SHOULD use this
format for the first chunk of each message after the first.

 0 1 2
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3
+-+
| timestamp delta |
+-+

Figure 11 Chunk Message Header – Type 2

6.1.2.4. Type 3

Chunks of Type 3 have no header. Stream ID, message length and
timestamp delta are not present; chunks of this type take values from
the preceding chunk. When a single message is split into chunks, all
chunks of a message except the first one, SHOULD use this type. Refer
to example 2 in section 6.2.2. Stream consisting of messages of
exactly the same size, stream ID and spacing in time SHOULD use this
type for all chunks after chunk of Type 2. Refer to example 1 in
section 6.2.1. If the delta between the first message and the second
message is same as the time stamp of first message, then chunk of
type 3 would immediately follow the chunk of type 0 as there is no
need for a chunk of type 2 to register the delta. If Type 3 chunk
follows a Type 0 chunk, then timestamp delta for this Type 3 chunk is
the same as the timestamp of Type 0 chunk.

Description of each field in the chunk message header.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 19]

timestamp delta: 3 bytes

For a type-1 or type-2 chunk, the difference between the previous
chunk's timestamp and the current chunk's timestamp is sent here.
If the delta is greater than or equal to 16777215 (hexadecimal
0x00ffffff), this value MUST be 16777215, and the ‘extended
timestamp header’ MUST be present. Otherwise, this value SHOULD be
the entire delta.

message length: 3 bytes

For a type-0 or type-1 chunk, the length of the message is sent
here.

Note that this is generally not the same as the length of the chunk
payload. The chunk payload length is the maximum chunk size for all
but the last chunk, and the remainder (which may be the entire
length, for small messages) for the last chunk.

message type id: 1 byte
 For a type-0 or type-1 chunk, type of the message is sent here.

message stream id: 4 bytes

For a type-0 chunk, the message stream ID is stored. Message stream
ID is stored in little-endian format. Typically, all messages in
the same chunk stream will come from the same message stream. While
it is possible to multiplex separate message streams into the same
chunk stream, this defeats all of the header compression. However,
if one message stream is closed and another one subsequently
opened, there is no reason an existing chunk stream cannot be
reused by sending a new type-0 chunk.

6.1.3. Extended Timestamp

This field is transmitted only when the normal time stamp in the
chunk message header is set to 0x00ffffff. If normal time stamp is
set to any value less than 0x00ffffff, this field MUST NOT be
present. This field MUST NOT be present if the timestamp field is not
present. Type 3 chunks MUST NOT have this field.

This field if transmitted is located immediately after the chunk
message header and before the chunk data.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 20]

+-------------+----------------+-------------------+--------------+
| Basic header|Chunk Msg Header|Extended Time Stamp| Chunk Data |
+-------------+----------------+-------------------+--------------+

Figure 12 Chunk Format.

6.2. Examples

6.2.1. Example 1

Example 1 shows a simple stream of audio messages. This example
demonstrates the redundancy of information.

+---------+-----------------+-----------------+-----------------+
| |Message Stream ID| Message TYpe ID | Time | Length |
+---------+-----------------+-----------------+-------+---------+
| Msg # 1 | 12345 | 8 | 1000 | 32 |
+---------+-----------------+-----------------+-------+---------+
| Msg # 2 | 12345 | 8 | 1020 | 32 |
+---------+-----------------+-----------------+-------+---------+
| Msg # 3 | 12345 | 8 | 1040 | 32 |
+---------+-----------------+-----------------+-------+---------+
| Msg # 4 | 12345 | 8 | 1060 | 32 |
+---------+-----------------+-----------------+-------+---------+

Figure 13 Sample Audio messages to be made into chunks

The next table shows chunks produced in this stream. From message 3
onward, data transmission is optimized. There is only 1 byte of
overhead per message beyond this point.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 21]

+--------+---------+-----+------------+------- ---+------------+
	Chunk	Chunk	Header Data	No.of Bytes	Total No.of
	Stream ID	Type		After	Bytes in the
				Header	Chunk
+--------+---------+-----+------------+-----------+------------+					
Chunk#1	3	0	delta: 1000	32	44
			length: 32,		
			type: 8,		
			stream ID:		
			12345 (11		
			bytes)		
+--------+---------+-----+------------+-----------+------------+					
Chunk#2	3	2	20 (3	32	36
			bytes)		
+--------+---------+-----+----+-------+-----------+------------+					
Chunk#3	3	3	none (0	32	33
			bytes)		
+--------+---------+-----+------------+-----------+------------+					
Chunk#4	3	3	none (0	32	33
			bytes)		
+--------+---------+-----+------------+-----------+------------+

Figure 14 Format of each of the chunks of audio messages above

6.2.2. Example 2

Example 2 illustrates a message that is too long to fit in a 128-
chunk and is broken into several chunks.

+-----------+-------------------+-----------------+-----------------+
| | Message Stream ID | Message TYpe ID | Time | Length |
+-----------+-------------------+-----------------+-----------------+
| Msg # 1 | 12346 | 9 (video) | 1000 | 307 |
+-----------+-------------------+-----------------+-----------------+

Figure 15 Sample Message to be broken to chunks

Here are the chunks that are produced:

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 22]

+-------+------+-----+-------------+-----------+------------+
	Chunk	Chunk	Header	No. of	Total No. of
	Stream	Type	Data	Bytes after	bytes in
	ID			Header	the chunk
+-------+------+-----+-------------+-----------+------------+					
Chunk#1	4	0	delta: 1000	128	140
			length: 307		
			type: 9,		
			stream ID:		
			12346 (11		
			bytes)		
+-------+------+-----+-------------+-----------+------------+					
Chunk#2	4	3	none (0	128	129
			bytes)		
+-------+------+-----+-------------+-----------+------------+					
Chunk#3	4	3	none (0	51	52
			bytes)		
+-------+------+-----+-------------+-----------+------------+

Figure 16 Format of each of the broken chunk.

The header data of chunk 1 specifies that the overall message is 307
bytes.

Notice from the two examples, that chunk type 3 can be used in two
different ways. The first is to specify the continuation of a
message. The second is to specify the beginning of a new message
whose header can be derived from the existing state data.

7. Protocol Control Messages

RTMP Chunk Stream supports some protocol control messages. These
messages contain information required by RTMP Chunk Stream protocol
and will not be propagated to the higher protocol layers. Currently
there are two protocol messages used in RTMP Chunk Stream. One
protocol message is used for setting the chunk size and the other is
used to abort a message due to non-availability of remaining chunks

Protocol control messages SHOULD have message stream ID 0(called as
control stream) and chunk stream ID 2, and are sent with highest
priority.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 23]

Each protocol control message type has a fixed-size payload, and is
always sent in a single chunk.

7.1. Set Chunk Size

Protocol control message 1, Set Chunk Size, is used to notify the
peer about the new maximum chunk size.

A default value can be set for the chunk size, but the client or the
server can change this value and update it to the peer. For example,
suppose a client wants to send 131 bytes of audio data and the chunk
size is 128. In this case, the client can send this protocol message
to the server to notify that the chunk size is set to 131 bytes. The
client can then send the audio data in a single chunk.

The maximum chunk size can be 65536 bytes. The chunk size is
maintained independently for each direction.

7.2. Abort Message

This protocol control message is used to notify the peer if it is
waiting for chunks to complete a message, then to discard the
partially received message over a chunk stream. The peer receives the
chunk stream ID as this protocol message’s payload. An application
may send this message when closing in order to indicate that further
processing of the messages is not required.

Real Time Messaging Chunk Stream Protocol June 2009

Adobe Systems Inc. [Page 24]

8. References

8.1. Normative References

[1] Bradner, S., "Key words for use in RFCs to Indicate Requirement
Levels", BCP 14, RFC 2119, March 1997.

[2] Crocker, D. and Overell, P.(Editors), "Augmented BNF for Syntax
Specifications: ABNF", RFC 2234, Internet Mail Consortium and
Demon Internet Ltd., November 1997.

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.

[RFC2234] Crocker, D. and Overell, P.(Editors), "Augmented BNF for
Syntax Specifications: ABNF", RFC 2234, Internet Mail
Consortium and Demon Internet Ltd., November 1997.

8.2. Informative References

[3] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in TCP
and Its Effect on Busy Servers", Proc. Infocom 1999 pp. 1573-
1583.

[Fab1999] Faber, T., Touch, J. and W. Yue, "The TIME-WAIT state in
TCP and Its Effect on Busy Servers", Proc. Infocom 1999 pp.
1573-1583.

9. Acknowledgments

Address:

Adobe Systems Incorporated
345 Park Avenue
San Jose, CA 95110-2704

