|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
using namespace std;
|
|
|
|
|
|
// dijkstra算法模板及其用法
|
|
|
// https://www.cnblogs.com/yoyo-sincerely/p/6400906.html
|
|
|
// https://www.cnblogs.com/mycapple/archive/2012/08/12/2634227.html
|
|
|
/***************************************
|
|
|
* About: 有向图的Dijkstra算法实现
|
|
|
* Author: Tanky Woo
|
|
|
* Blog: www.WuTianQi.com
|
|
|
***************************************/
|
|
|
const int maxnum = 100;
|
|
|
const int maxint = 999999;
|
|
|
|
|
|
// 各数组都从下标1开始
|
|
|
int dist[maxnum]; // 表示当前点到源点的最短路径长度
|
|
|
int prevArr[maxnum]; // 记录当前点的前一个结点
|
|
|
int c[maxnum][maxnum]; // 记录图的两点间路径长度
|
|
|
int n, line; // 图的结点数和路径数
|
|
|
|
|
|
void Dijkstra(int n, int v, int *dist, int *prev, int c[maxnum][maxnum]) {
|
|
|
bool s[maxnum]; // 判断是否已存入该点到S集合中
|
|
|
for (int i = 1; i <= n; ++i) {
|
|
|
dist[i] = c[v][i];
|
|
|
s[i] = 0; // 初始都未用过该点
|
|
|
if (dist[i] == maxint)
|
|
|
prev[i] = 0;
|
|
|
else
|
|
|
prev[i] = v;
|
|
|
}
|
|
|
dist[v] = 0;
|
|
|
s[v] = 1;
|
|
|
|
|
|
// 依次将未放入S集合的结点中,取dist[]最小值的结点,放入结合S中
|
|
|
// 一旦S包含了所有V中顶点,dist就记录了从源点到所有其他顶点之间的最短路径长度
|
|
|
for (int i = 2; i <= n; ++i) {
|
|
|
int tmp = maxint;
|
|
|
int u = v;
|
|
|
// 找出当前未使用的点j的dist[j]最小值
|
|
|
for (int j = 1; j <= n; ++j)
|
|
|
if ((!s[j]) && dist[j] < tmp) {
|
|
|
u = j; // u保存当前邻接点中距离最小的点的号码
|
|
|
tmp = dist[j];
|
|
|
}
|
|
|
s[u] = 1; // 表示u点已存入S集合中
|
|
|
|
|
|
// 更新dist
|
|
|
for (int j = 1; j <= n; ++j)
|
|
|
if ((!s[j]) && c[u][j] < maxint) {
|
|
|
int newdist = dist[u] + c[u][j];
|
|
|
if (newdist < dist[j]) {
|
|
|
dist[j] = newdist;
|
|
|
prev[j] = u;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
void searchPath(int *prev, int v, int u) {
|
|
|
int que[maxnum];
|
|
|
int tot = 1;
|
|
|
que[tot] = u;
|
|
|
tot++;
|
|
|
int tmp = prev[u];
|
|
|
while (tmp != v) {
|
|
|
que[tot] = tmp;
|
|
|
tot++;
|
|
|
tmp = prev[tmp];
|
|
|
}
|
|
|
que[tot] = v;
|
|
|
for (int i = tot; i >= 1; --i)
|
|
|
if (i != 1)
|
|
|
cout << que[i] << " -> ";
|
|
|
else
|
|
|
cout << que[i] << endl;
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
freopen("../MiniPath/Dijkstra2.txt", "r", stdin);
|
|
|
// 各数组都从下标1开始
|
|
|
|
|
|
// 输入结点数
|
|
|
cin >> n;
|
|
|
// 输入路径数
|
|
|
cin >> line;
|
|
|
int p, q, len; // 输入p, q两点及其路径长度
|
|
|
|
|
|
// 初始化c[][]为maxint
|
|
|
for (int i = 1; i <= n; ++i)
|
|
|
for (int j = 1; j <= n; ++j)
|
|
|
c[i][j] = maxint;
|
|
|
|
|
|
for (int i = 1; i <= line; ++i) {
|
|
|
cin >> p >> q >> len;
|
|
|
if (len < c[p][q]) // 有重边
|
|
|
{
|
|
|
c[p][q] = len; // p指向q
|
|
|
c[q][p] = len; // q指向p,这样表示无向图
|
|
|
}
|
|
|
}
|
|
|
|
|
|
for (int i = 1; i <= n; ++i)
|
|
|
dist[i] = maxint;
|
|
|
for (int i = 1; i <= n; ++i) {
|
|
|
for (int j = 1; j <= n; ++j)
|
|
|
printf("%8d", c[i][j]);
|
|
|
printf("\n");
|
|
|
}
|
|
|
|
|
|
Dijkstra(n, 1, dist, prevArr, c);
|
|
|
|
|
|
// 最短路径长度
|
|
|
cout << "源点到最后一个顶点的最短路径长度: " << dist[n] << endl;
|
|
|
|
|
|
// 路径
|
|
|
cout << "源点到最后一个顶点的路径为: ";
|
|
|
searchPath(prevArr, 1, n);
|
|
|
} |