You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
python/TangDou/CSP-J/J1_2022/一元二次方程求根公式的推导过程.md

679 B

一元二次方程求根公式的推导过程

Q:求根公式\LARGE x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}是怎么来的呢?

我们下面从头来推导一下:

\because (a+b)^2=(a+b)(a+b)=a^2+2ab+b^2

那么,形式为ax^2+bx+c=0(a\neq 0)的方程,我们也想办法进行配方:

\large \therefore x^2+\frac{b}{a} x+\frac{c}{a}=0
\large  x^2+\frac{b}{a} x=-\frac{c}{a}
\large x^2+\frac{b}{a}x+\frac{b^2}{4a^2}=\frac{b^2}{4a^2}-\frac{c}{a}
\large (x+\frac{b}{2a})^2=\frac{b^2-4ac}{4a^2}

左右同时开方

\large x+\frac{b}{2a}=\pm \frac{\sqrt{b^2-4ac}}{2a}
\therefore \large x=\frac{-b \pm \sqrt{b^2-4ac}}{2a}