1.7 KiB
一、第一问
\because
圆中同弧所对的圆周角相等
\therefore
\angle AED=\angle ABD
①
连接AD
, \because \angle ADB
是直径AB
所对的圆周角,\therefore \angle ADB=90^{\circ}
又 \because D
是BC
中点,所以\triangle ADB \cong \triangle ADC
\therefore \angle ABD = \angle ACB
②
联立 ① ②, \therefore \angle AED=\angle C
二、第二问
\because \angle AED=55^{\circ}
\therefore \angle ABC=\angle C=55^{\circ}
\therefore \angle BAC=180^{\circ}-55^{\circ}-55^{\circ}=70^{\circ}
根据 圆的内接四边形对角互补,\therefore \angle BDF=110^{\circ}
三、第三问
看到线段乘积,考虑找到相似三角形
\large \frac{EG}{?}=\frac{?}{ED}
考虑\triangle EAG \sim \triangle EAD
如何证明呢?
有一个公共角\angle AED
还需要再找一个角:
因为E
是 \overset{{\frown}}{AB}
的中点,
\therefore \angle ADE=\angle BAE
\therefore \triangle EAG \sim \triangle EAD
\large \frac{EG}{AE}=\frac{AE}{ED}
\Rightarrow
EG*ED=AE^2
AE
长度如何求解呢?
\because \angle AFD+\angle ABD=180^{\circ}
\because \angle AFD+\angle CFD=180^{\circ}
\therefore \angle ABD=\angle CFD
因为有第一问的结论,所以\triangle DCF
是等腰三角形,CD=DF=BD=4
\because cos\angle ABD=\frac{2}{3}
\large \therefore \frac{BD}{AB}=\frac{2}{3}
\therefore AB=6
\because \triangle ABE
是等腰直角三角形
\therefore AE=3\sqrt{2}
\therefore EG*ED=(3\sqrt{2})^2=18