|
|
#include <bits/stdc++.h>
|
|
|
const int N = 110;
|
|
|
char a[N][N];
|
|
|
/*
|
|
|
4
|
|
|
abccddadca
|
|
|
|
|
|
2
|
|
|
aaa
|
|
|
*/
|
|
|
using namespace std;
|
|
|
|
|
|
struct Node {
|
|
|
int x, y;
|
|
|
char c;
|
|
|
};
|
|
|
vector<Node> q;
|
|
|
/*
|
|
|
把半径当做 1 ,建立坐标系,然后枚举就行了,需要注意的是,在判断三条边的长度是否相等时用 double 牵扯到精度问题,
|
|
|
解决方法是:比较长度的平方,长度的平方肯定是整数,还有就是层层之间纵坐标相差是sqrt(3) 的倍数,
|
|
|
为了不牵扯到小数,把纵坐标的 sqrt(3) 当做1 ,求边长时乘三即可。
|
|
|
*/
|
|
|
int pf(int x) {
|
|
|
return x * x;
|
|
|
}
|
|
|
|
|
|
bool check(Node a, Node b, Node c) {
|
|
|
if (a.c != b.c || a.c != c.c || b.c != c.c) return false;
|
|
|
// a与b之间距离 不等于 a与c之间距离
|
|
|
if (pf(a.x - b.x) + pf(a.y - b.y) * 3 != pf(a.x - c.x) + pf(a.y - c.y) * 3) return false;
|
|
|
// a与b之间距离 不等于 b与c之间距离
|
|
|
if (pf(a.x - b.x) + pf(a.y - b.y) * 3 != pf(b.x - c.x) + pf(b.y - c.y) * 3) return false;
|
|
|
|
|
|
return true;
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
#ifndef ONLINE_JUDGE
|
|
|
freopen("ZhiMuSanJiaoXing.in", "r", stdin);
|
|
|
#endif
|
|
|
int n;
|
|
|
cin >> n;
|
|
|
string s;
|
|
|
cin >> s;
|
|
|
// 先把字符串存入char[][]
|
|
|
int idx = 0;
|
|
|
for (int i = 0; i < n; i++) // n行
|
|
|
for (int j = 0; j <= i; j++) // i列
|
|
|
a[i][j] = s[idx++];
|
|
|
|
|
|
// 把所有坐标记录下来
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
for (int j = 0; j <= i; j++) {
|
|
|
q.push_back({n - 1 - i, j, a[i][j]});
|
|
|
// cout << "x=" << n - 1 - i << ",y=" << j << " " << a[i][j] << endl;
|
|
|
}
|
|
|
}
|
|
|
|
|
|
vector<char> res;
|
|
|
// 在q数组中,选择任意三个,计算两两间距离是不是相等
|
|
|
for (int i = 0; i < q.size(); i++)
|
|
|
for (int j = i + 1; j < q.size(); j++)
|
|
|
for (int k = j + 1; k < q.size(); k++) {
|
|
|
if (check(q[i], q[j], q[k])) res.push_back(q[i].c);
|
|
|
}
|
|
|
|
|
|
// if (res.size() == 0)
|
|
|
// cout << "No Solution" << endl;
|
|
|
// else {
|
|
|
// sort(res.begin(), res.end());
|
|
|
// for (char x : res) cout << x << endl;
|
|
|
// }
|
|
|
return 0;
|
|
|
} |