|
|
#include <queue>
|
|
|
#include <cstring>
|
|
|
#include <iostream>
|
|
|
#include <algorithm>
|
|
|
using namespace std;
|
|
|
#define x first
|
|
|
#define y second
|
|
|
|
|
|
const int N = 1e3 + 13;
|
|
|
const int M = 1e6 + 10;
|
|
|
int n, m, u, v, s, f;
|
|
|
int dist[N][2], cnt[N][2];
|
|
|
bool st[N][2];
|
|
|
|
|
|
//链式前向星
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
}
|
|
|
|
|
|
struct Node {
|
|
|
// u: 节点号
|
|
|
// d:目前结点v的路径长度
|
|
|
// k:是最短路0还是次短路1
|
|
|
int u, d, k;
|
|
|
// POJ中结构体,没有构造函数,直接报编译错误
|
|
|
Node(int u, int d, int k) {
|
|
|
this->u = u, this->d = d, this->k = k;
|
|
|
}
|
|
|
const bool operator<(Node x) const {
|
|
|
return d > x.d;
|
|
|
}
|
|
|
};
|
|
|
|
|
|
void dijkrsta() {
|
|
|
priority_queue<Node> q; //通过定义结构体小于号,实现小顶堆
|
|
|
memset(dist, 0x3f, sizeof(dist)); //清空最小距离与次小距离数组
|
|
|
memset(cnt, 0, sizeof(cnt)); //清空最小距离路线个数与次小距离路线个数数组
|
|
|
memset(st, 0, sizeof(st)); //清空是否出队过数组
|
|
|
|
|
|
cnt[s][0] = 1; //起点s,0:最短路,1:有一条
|
|
|
cnt[s][1] = 0; //次短路,路线数为0
|
|
|
|
|
|
dist[s][0] = 0; //最短路从s出发到s的距离是0
|
|
|
dist[s][1] = 0; //次短路从s出发到s的距离是0
|
|
|
|
|
|
q.push(Node(s, 0, 0)); //入队列
|
|
|
|
|
|
while (q.size()) {
|
|
|
Node x = q.top();
|
|
|
q.pop();
|
|
|
|
|
|
int u = x.u, k = x.k, d = x.d;
|
|
|
|
|
|
if (st[u][k]) continue; //①
|
|
|
st[u][k] = true;
|
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
int dj = d + w[i]; //原长度+到节点j的边长
|
|
|
|
|
|
if (dj == dist[j][0]) //与到j的最短长度相等,则更新路径数量
|
|
|
cnt[j][0] += cnt[u][k];
|
|
|
else if (dj < dist[j][0]) { //找到更小的路线,需要更新
|
|
|
dist[j][1] = dist[j][0]; //次短距离被最短距离覆盖
|
|
|
cnt[j][1] = cnt[j][0]; //次短个数被最短个数覆盖
|
|
|
|
|
|
dist[j][0] = dj; //更新最短距离
|
|
|
cnt[j][0] = cnt[u][k]; //更新最短个数
|
|
|
|
|
|
q.push(Node(j, dist[j][1], 1)); //②
|
|
|
q.push(Node(j, dist[j][0], 0));
|
|
|
} else if (dj == dist[j][1]) //如果等于次短
|
|
|
cnt[j][1] += cnt[u][k]; //更新次短的方案数,累加
|
|
|
else if (dj < dist[j][1]) { //如果大于最短,小于次短,两者中间
|
|
|
dist[j][1] = dj; //更新次短距离
|
|
|
cnt[j][1] = cnt[u][k]; //更新次短方案数
|
|
|
q.push(Node(j, dist[j][1], 1)); //次短入队列
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
int main() {
|
|
|
int T;
|
|
|
scanf("%d", &T);
|
|
|
while (T--) {
|
|
|
memset(h, -1, sizeof h);
|
|
|
scanf("%d %d", &n, &m);
|
|
|
while (m--) {
|
|
|
int a, b, c;
|
|
|
scanf("%d %d %d", &a, &b, &c);
|
|
|
add(a, b, c);
|
|
|
}
|
|
|
//起点和终点
|
|
|
scanf("%d %d", &s, &f);
|
|
|
//计算最短路
|
|
|
dijkrsta();
|
|
|
//输出
|
|
|
printf("%d\n", cnt[f][0] + (dist[f][1] == dist[f][0] + 1 ? cnt[f][1] : 0));
|
|
|
}
|
|
|
return 0;
|
|
|
}
|