|
|
#include <cstdio>
|
|
|
#include <iostream>
|
|
|
#include <stdlib.h>
|
|
|
using namespace std;
|
|
|
#define int long long
|
|
|
#define endl "\r"
|
|
|
const int N = 10;
|
|
|
|
|
|
int n = 3;
|
|
|
int a[N] = {0, 23, 28, 33};
|
|
|
int m[N];
|
|
|
int exgcd(int a, int b, int &x, int &y) {
|
|
|
if (!b) {
|
|
|
x = 1, y = 0;
|
|
|
return a;
|
|
|
}
|
|
|
int d = exgcd(b, a % b, y, x);
|
|
|
y -= a / b * x;
|
|
|
return d;
|
|
|
}
|
|
|
|
|
|
int exCRT() { // m代表合并多少次,有n个方程,其实m=n-1
|
|
|
int a1 = a[1], m1 = m[1], a2, m2, k1, k2;
|
|
|
|
|
|
for (int i = 2; i <= n; i++) { // a1,m1:做为先遣军,准备与后续的方程合并
|
|
|
a2 = a[i], m2 = m[i];
|
|
|
int d = exgcd(a1, -a2, k1, k2); // 扩展欧几里得求方程特解,x有用,y无用
|
|
|
if ((m2 - m1) % d) return -1; // 拼出来的同余方程无解,继续不下去
|
|
|
k1 *= (m2 - m1) / d; // 同比扩大指定倍数
|
|
|
int t = abs(a2 / d); // 最小累计单元
|
|
|
k1 = (k1 % t + t) % t; // 取得最小正整数解,否则可以会在计算过程中爆long long
|
|
|
m1 = k1 * a1 + m1; // 准备下一轮的m[1],a[1]
|
|
|
a1 = abs(a1 / d * a2); // 两个顺序不能反
|
|
|
}
|
|
|
return (m1 % a1 + a1) % a1; // 取得最小正整数解
|
|
|
}
|
|
|
|
|
|
int T;
|
|
|
int m1, m2, m3, d;
|
|
|
signed main() {
|
|
|
while (cin >> m[1] >> m[2] >> m[3] >> d && ~m[1]) {
|
|
|
T++;
|
|
|
int res = exCRT();
|
|
|
int A = a[1] * a[2] * a[3];
|
|
|
if (res <= d) res += A;
|
|
|
printf("Case %lld: the next triple peak occurs in %lld days.\n", T, res - d);
|
|
|
}
|
|
|
} |