You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2.3 KiB
2.3 KiB
P1939
【模板】矩阵加速(数列)
一、题目描述
二、解题思路
从题目上来看,知道需要递推求公式,但n<=2e9
,我们知道简单递推肯定要挂掉。
所以想到需要一个O(NlogN)
的算法,递推求式子,线性的还不行,联想到矩阵快速幂。
\large \begin{bmatrix}f_{x-3} & f_{x-2} & f_{x-1} \end{bmatrix} \times
\begin{bmatrix}
a&b &c \\
d&e &f \\
g&h &i
\end{bmatrix} = \begin{bmatrix}f_{x-2} & f_{x-1} & f_{x} \end{bmatrix}
\therefore
\large f_{x-3} \times a+f_{x-2}\times d + f_{x-1}\times g =f_{x-2}
\large f_{x-3} \times b+f_{x-2}\times e + f_{x-1}\times h =f_{x-1}
\large f_{x-3} \times c+f_{x-2}\times f + f_{x-1}\times i =f_{x}
对比观察得到:
a=0,d=1,g=0
b=0,e=0,h=1
c=1,f=0,i=1
得到
m=\begin{bmatrix}
0& 0 & 1 \\
1& 0 & 0 \\
0& 1 & 1
\end{bmatrix}$$
而初始化矩阵$b=\begin{bmatrix} f_{1}& f_{2} & f_3 \end{bmatrix}=\begin{bmatrix} 1&1&1 \end{bmatrix}$
**递推式**:
$\large b=\begin{bmatrix}f_{x-2}& f_{x-1} & f_x \end{bmatrix}=
\begin{bmatrix}f_{1}& f_{2} & f_3 \end{bmatrix} \times
\begin{bmatrix}
0& 0 & 1 \\
1& 0 & 0 \\
0& 1 & 1
\end{bmatrix}^{n-3}
$
**答案**:
$\large b[0][2]$
$Code$
```cpp {.line-numbers}
#include <bits/stdc++.h>
using namespace std;
#define int long long
#define endl "\n"
const int MOD = 1e9 + 7;
const int N = 4;
int n;
// 矩阵乘法
void mul(int a[][N], int b[][N], int c[][N]) {
int t[N][N] = {0};
for (int i = 0; i < N; i++)
for (int j = 0; j < N; j++)
for (int k = 0; k < N; k++)
t[i][j] = (t[i][j] + (a[i][k] * b[k][j] % MOD)) % MOD;
memcpy(c, t, sizeof t);
}
void solve() {
int b[N][N] = {1, 1, 1}, m[N][N] = {0};
m[0][2] = m[1][0] = m[2][1] = m[2][2] = 1;
for (int i = n - 3; i; i >>= 1) {
if (i & 1) mul(b, m, b);
mul(m, m, m);
}
printf("%lld\n", b[0][2]);
}
signed main() {
int T;
cin >> T;
while (T--) {
cin >> n;
if (n <= 3) {
printf("1\n");
continue;
}
solve();
}
}
```