You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
202 lines
4.7 KiB
202 lines
4.7 KiB
## $Dijkstra$算法专题
|
|
|
|
### 一、解决的问题
|
|
计算从 **源** 到所有其他各顶点的最短路径长度。这里的长度是指路上各边权之和。这个问题通常称为单源最短路径问题。
|
|
|
|
### 二、算法原理
|
|

|
|
|
|
> **视频讲解** : **[【5分钟搞定$Dijkstra$算法】](https://www.bilibili.com/video/BV1ha4y1T7om)**
|
|
|
|
### 三、题单
|
|
#### 【模板题】[$AcWing$ $850$. $Dijkstra$求最短路 $II$](https://www.acwing.com/problem/content/description/852/)
|
|
|
|
输入样例
|
|
```cpp {.line-numbers}
|
|
3 3
|
|
1 2 2
|
|
2 3 1
|
|
1 3 4
|
|
```
|
|
输出样例
|
|
```cpp {.line-numbers}
|
|
3
|
|
```
|
|
**$Code$**
|
|
```cpp {.line-numbers}
|
|
#include <bits/stdc++.h>
|
|
|
|
using namespace std;
|
|
typedef pair<int, int> PII;
|
|
const int INF = 0x3f3f3f3f;
|
|
const int N = 150010, M = N << 1;
|
|
|
|
int st[N];
|
|
int dis[N]; // 距离数组
|
|
|
|
// 邻接表
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
void add(int a, int b, int c) {
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
}
|
|
|
|
int n, m;
|
|
int dijkstra() {
|
|
memset(dis, 0x3f, sizeof dis);
|
|
dis[1] = 0;
|
|
priority_queue<PII, vector<PII>, greater<PII>> q; // 小顶堆
|
|
q.push({0, 1});
|
|
|
|
while (q.size()) {
|
|
PII t = q.top();
|
|
q.pop();
|
|
int u = t.second;
|
|
if (!st[u]) {
|
|
st[u] = 1;
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
int v = e[i];
|
|
if (dis[v] > dis[u] + w[i]) {
|
|
dis[v] = dis[u] + w[i];
|
|
q.push({dis[v], v});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (dis[n] == INF) return -1;
|
|
return dis[n];
|
|
}
|
|
int main() {
|
|
cin >> n >> m;
|
|
memset(h, -1, sizeof h);
|
|
while (m--) {
|
|
int a, b, c;
|
|
cin >> a >> b >> c;
|
|
add(a, b, c);
|
|
}
|
|
printf("%d\n", dijkstra());
|
|
return 0;
|
|
}
|
|
```
|
|
|
|
### [$AcWing$ $1129$. 热浪](https://www.acwing.com/problem/content/description/1131/)
|
|
与模板相比,只是起点和终点是输入的,其它无区别。
|
|
|
|
**$Code$**
|
|
```cpp {.line-numbers}
|
|
#include <bits/stdc++.h>
|
|
using namespace std;
|
|
const int N = 2510;
|
|
const int M = 6200 * 2 + 10;
|
|
|
|
typedef pair<int, int> PII;
|
|
|
|
int h[N], w[M], e[M], ne[M], idx;
|
|
bool st[N];
|
|
int dis[N];
|
|
|
|
void add(int a, int b, int c) {
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
}
|
|
|
|
int n, m, S, T;
|
|
|
|
int dijkstra() {
|
|
memset(dis, 0x3f, sizeof dis);
|
|
dis[S] = 0;
|
|
|
|
priority_queue<PII, vector<PII>, greater<PII>> q;
|
|
q.push({0, S});
|
|
while (q.size()) {
|
|
PII t = q.top();
|
|
q.pop();
|
|
int u = t.second;
|
|
if (st[u]) continue;
|
|
st[u] = true;
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
int v = e[i];
|
|
if (dis[v] > dis[u] + w[i]) {
|
|
dis[v] = dis[u] + w[i];
|
|
q.push({dis[v], v});
|
|
}
|
|
}
|
|
}
|
|
return dis[T];
|
|
}
|
|
|
|
int main() {
|
|
cin >> n >> m >> S >> T;
|
|
memset(h, -1, sizeof h);
|
|
|
|
while (m--) {
|
|
int a, b, c;
|
|
cin >> a >> b >> c;
|
|
add(a, b, c), add(b, a, c);
|
|
}
|
|
printf("%d\n", dijkstra());
|
|
return 0;
|
|
}
|
|
```
|
|
|
|
#### [$AcWing$ $1128$. 信使](https://www.acwing.com/problem/content/1130/)
|
|
**总结**:从$1$号哨所出发,计算出到每个哨所的最短路径,所以最短路径中最长的,表示需要的最少时间,是一个最短路径模板+思维问题。
|
|
|
|
**$Code$**
|
|
|
|
```cpp {.line-numbers}
|
|
#include <bits/stdc++.h>
|
|
using namespace std;
|
|
typedef pair<int, int> PII;
|
|
const int INF = 0x3f3f3f3f;
|
|
const int N = 110;
|
|
const int M = 2 * 210; // 无向图,需要开二倍的数组长度!
|
|
|
|
int n, m;
|
|
int h[N], e[M], w[M], ne[M], idx;
|
|
void add(int a, int b, int c) {
|
|
e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
|
|
}
|
|
int dis[N];
|
|
bool st[N];
|
|
|
|
int dijkstra() {
|
|
memset(dis, 0x3f, sizeof dis);
|
|
dis[1] = 0;
|
|
|
|
priority_queue<PII, vector<PII>, greater<int>> q;
|
|
q.push({0, 1});
|
|
|
|
while (q.size()) {
|
|
PII t = q.top();
|
|
q.pop();
|
|
int u = t.second;
|
|
if (st[u]) continue;
|
|
st[u] = true;
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
int v = e[i];
|
|
if (dis[v] > dis[u] + w[i]) {
|
|
dis[v] = dis[u] + w[i];
|
|
q.push({dis[v], v});
|
|
}
|
|
}
|
|
}
|
|
int mx = 0;
|
|
for (int i = 1; i <= n; i++) {
|
|
if (dis[i] == INF) return -1;
|
|
mx = max(mx, dis[i]);
|
|
}
|
|
return mx;
|
|
}
|
|
int main() {
|
|
memset(h, -1, sizeof h);
|
|
cin >> n >> m;
|
|
while (m--) {
|
|
int a, b, c;
|
|
cin >> a >> b >> c;
|
|
add(a, b, c), add(b, a, c);
|
|
}
|
|
printf("%d\n", dijkstra());
|
|
return 0;
|
|
}
|
|
|
|
``` |