You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
python/TangDou/AcWing/BeiBao/【总结】脑图形式(二维)总结.md

3.1 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

背包问题(二维求法)

求方案数

  • 体积至多j
    • 初始:f[0][i]=1,0<=i<=m,其余为0
    • 01背包
    •   for (int j = 0; j <= m; j++) {
          f[i][j] = f[i - 1][j];
          if (j >= v) f[i][j] += f[i - 1][j - v];
        }
      
    • 完全背包
    •   for (int j = 0; j <= m; j++) {
        f[i][j] = f[i - 1][j];
            if (j >= v) f[i][j] += f[i][j - v];
        }
      
  • 体积恰好j
    • 初始:f[i][0]=1,0<=i<=n,其余为0
    • 01背包
    • for (int j = 0; j <= m; j++) {
              f[i][j] = f[i - 1][j];
              if (j >= v) f[i][j] += f[i - 1][j - v];
          }
      
    • 完全背包
    • for (int j = 0; j <= m; j++) {
              f[i][j] = f[i - 1][j];
              if (j >= v) f[i][j] += f[i][j - v];
          }
      
  • 体积至少j
    • 初始:f[0][0]=1,其余为0
    • 01背包
    • for (int j = 0; j <= m; j++)
         f[i][j] = f[i - 1][j] + f[i - 1][max(0, j - v)];
      
    • 完全背包代码
    • 有无穷多组方案数,不这么问

求最大/小值

  • 体积至多j
    • 初始:f[i,j]=00 <= i <= n, 0 <= j <= m
    • 01背包
    • for (int j = 0; j <= m; j++) {
              f[i][j] = f[i - 1][j];
              if (j >= v) f[i][j] = max(f[i][j], f[i - 1][j - v] + w);
          }
      
    • 完全背包
    • for (int j = 1; j <= m; j++) {
              f[i][j] = f[i - 1][j];
              if (j >= v) f[i][j] = max(f[i][j], f[i][j - v] + w);
          }
      
  • 体积恰好j
    • 求最小值
      • 初始化f[0][0]=0,其它是INF
      • 01 背包
      • for (int j = 0; j <= m; j++) {
              f[i][j] = f[i - 1][j];
              if (j >= v) f[i][j] = min(f[i][j], f[i - 1][j - v] + w);
          }
        
      • 完全背包
      • for (int j = 0; j <= m; j++) {
              f[i][j] = f[i - 1][j];
              if (j >= v) f[i][j] = min(f[i][j], f[i][j - v] + w);
          }
        
    • 求最大值
      • 初始化f[0][0]=0, 其余是INF
      • 01背包 
      • for (int j = 0; j <= m; j++) {
              f[i][j] = f[i - 1][j];
              if (j >= v) f[i][j] = max(f[i][j], f[i - 1][j - v] + w);
          }
        
      • 完全背包
      •  for (int j = 0; j <= m; j++) {
              f[i][j] = f[i - 1][j];
              if (j >= v) f[i][j] = max(f[i][j], f[i][j - v] + w);
          }
        
  • 体积至少j
    • 求最小值
      • 初始化f[0][0]=0, 其余是INF
      • 01背包 
      •   for (int j = 0; j <= m; j++)
              f[i][j] = min(f[i - 1][j], f[i - 1][max(0, j - v)] + w);
        
      • 完全背包
      •  for (int j = 0; j <= m; j++)
              f[i][j] = min(f[i - 1][j], f[i][max(0, j - v)] + w); 
        
    • 求最大值
      • 没有求最大值的