|
|
#include <bits/stdc++.h>
|
|
|
using namespace std;
|
|
|
#define int long long
|
|
|
#define endl "\n"
|
|
|
const int maxn = 10000;
|
|
|
const int Six = 166666668; /// 6,2关于mod的乘法逆元
|
|
|
const int Two = 500000004;
|
|
|
const int mod = 1e9 + 7; /// 尽量这样定义mod ,减少非必要的麻烦
|
|
|
|
|
|
inline int Mod(int a, int b) {
|
|
|
return (a % mod) * (b % mod) % mod;
|
|
|
}
|
|
|
inline int F(int k, int n) { /// 求(k*n)^2+k*n
|
|
|
return (Mod(k, k) * Mod(Mod(n, n + 1), Mod(n + n + 1, Six)) % mod + Mod(Mod(1 + n, n), Mod(k, Two))) % mod;
|
|
|
}
|
|
|
|
|
|
vector<int> p; // 将m拆分成的质数因子序列p
|
|
|
|
|
|
signed main() {
|
|
|
#ifndef ONLINE_JUDGE
|
|
|
freopen("SpareTire.in", "r", stdin);
|
|
|
#endif
|
|
|
int n, m;
|
|
|
|
|
|
while (cin >> n >> m) {
|
|
|
int sum = F(1, n), ans = 0; /// 计算总和sum
|
|
|
|
|
|
int t = m; // 复制出来
|
|
|
for (int i = 2; i * i <= t; i++) {
|
|
|
if (t % i == 0) {
|
|
|
p.push_back(i);
|
|
|
while (t % i == 0) t = t / i;
|
|
|
}
|
|
|
}
|
|
|
if (t > 1) p.push_back(t);
|
|
|
|
|
|
int item = 1 << p.size(); /// 开始容斥
|
|
|
|
|
|
// 例如有3个因子,那么item=1<<3=8(1000二进制)
|
|
|
// 然后i从1开始枚举直到7(111二进制),i中二进制的位置1表式取这个位置的因子
|
|
|
// 例如i=3(11二进制) 表示去前两个因子,i=5(101)表示取第1个和第3个的因子
|
|
|
for (int i = 1; i < item; i++) {
|
|
|
int num = 0, x = 1;
|
|
|
|
|
|
for (int j = 0; j < p.size(); j++) {
|
|
|
if (1 & (i >> j)) num++, x *= p[j];
|
|
|
}
|
|
|
|
|
|
if (num & 1)
|
|
|
ans = (ans + F(x, n / x)) % mod; /// 根据容斥,取奇数个因子时,应加上
|
|
|
else
|
|
|
ans = ((ans - F(x, n / x)) % mod + mod) % mod;
|
|
|
}
|
|
|
|
|
|
printf("%lld\n", ((sum - ans) % mod + mod) % mod);
|
|
|
}
|
|
|
}
|