You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1.6 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

原文链接

1. 同余符号:\equiv

1含义 两个整数ab,若它们除以整数m所得的余数相等,则称ab对于模m同余,记作a≡b(mod \ m)。读作a同余于bm,或读作ab关于模m同余。 例:26≡14(mod \ 12)

2定义m是大于1的正整数,ab是整数,如果m|(a-b),则称ab关于模m同余,记作a≡b(mod \ m),读作a同余于bm

3性质 (1) 若a≡0(mod\ m),则m|a; (2) a≡b(mod\ m)等价于ab分别用m去除,余数相同

2. 同余定理

1定义 给定一个正整数m,如果两个整数ab满足a-b能够被m整除,即(a-b)/m得到一个整数,那么就称整数ab对模m同余,记作a≡b(mod\ m)

反身性:a≡a (mod\ m)

对称性:若a≡b(mod \ m),则b≡a (mod\ m)

传递性:若a≡b(mod \ m)b≡c(mod \ m),则a≡c(mod \ m)

同余式相加减:若a≡b(mod\ m)c≡d(mod \ m),则a±c≡b±d(mod\ m)

同余式相乘:若a≡b(mod\ m)c≡d(mod\ m),则ac≡bd(mod \ m)

同余式数乘:若a≡b(mod\ m),则a\times k≡b \times k(mod \ m)k为任意整数。

除法:若 ac≡bc\ (mod\ m),c≠0,则 a≡b(mod\ m/(gcd(c,m))) ,其中gcd(c,m)表示cm的最大公约数,特殊地,gcd(c,m)=1,则 a≡b(mod \ m)

幂运算:如果a≡b(mod \ m) ,那么 $a^n ≡b^n (mod \ m)$