|
|
#include <bits/stdc++.h>
|
|
|
using namespace std;
|
|
|
const int N = 10010, M = 60010;
|
|
|
|
|
|
int dnt[N], low[N], id[N], sz[N], timestamp, scc_cnt;
|
|
|
int stk[N], top, in_stk[N];
|
|
|
|
|
|
int dist[N]; //记录强连通分量距离起点的距离
|
|
|
int n, m;
|
|
|
|
|
|
int h[N], hs[N], ne[M], e[M], w[M], idx; // hs[u]为强连通分量建的图的表头
|
|
|
void add(int h[], int a, int b, int c) {
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
}
|
|
|
|
|
|
//有向图的Tarjan算法求强连通分量
|
|
|
void tarjan(int u) {
|
|
|
low[u] = dnt[u] = ++timestamp;
|
|
|
stk[++top] = u;
|
|
|
in_stk[u] = true;
|
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
if (!dnt[j]) {
|
|
|
tarjan(j);
|
|
|
low[u] = min(low[u], low[j]);
|
|
|
} else if (in_stk[j])
|
|
|
low[u] = min(low[u], dnt[j]);
|
|
|
}
|
|
|
|
|
|
if (low[u] == dnt[u]) {
|
|
|
int x;
|
|
|
++scc_cnt;
|
|
|
do {
|
|
|
x = stk[top--];
|
|
|
in_stk[x] = false;
|
|
|
id[x] = scc_cnt;
|
|
|
sz[scc_cnt]++;
|
|
|
} while (x != u);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
memset(h, -1, sizeof h);
|
|
|
memset(hs, -1, sizeof hs);
|
|
|
scanf("%d %d", &n, &m);
|
|
|
while (m--) {
|
|
|
int a, b;
|
|
|
scanf("%d %d", &a, &b);
|
|
|
add(h, b, a, 1); // b->边权为1的边->a
|
|
|
}
|
|
|
|
|
|
//超级源点0号点
|
|
|
for (int i = 1; i <= n; i++) add(h, 0, i, 100); // 0号点有一条边权100的边到i
|
|
|
|
|
|
// Tarjan算法求强连通分量(有向图)
|
|
|
for (int i = 0; i <= n; i++)
|
|
|
if (!dnt[i]) tarjan(i); //对于每个未访问过的点进行dfs,防止有孤立的点访问不到
|
|
|
|
|
|
if (scc_cnt != n + 1)
|
|
|
puts("Poor Xed");
|
|
|
else {
|
|
|
for (int u = 0; u <= n; ++u) {
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
|
|
|
int a = id[u], b = id[j];
|
|
|
if (a != b)
|
|
|
add(hs, a, b, w[i]); //建新图
|
|
|
}
|
|
|
}
|
|
|
|
|
|
dist[0] = 0;
|
|
|
//递推求出新建的图中的最长路(按照拓扑序来递推,scc_cnt ~ 1这个顺序符合拓扑序)
|
|
|
// Tarjan算法本质是一个dfs算法,得到的拓扑序是倒序的,需要倒序枚举
|
|
|
//拓扑序Topsort本质是一个bfs算法,得到的拓扑序是正序的,需要正序枚举
|
|
|
for (int u = scc_cnt; u >= 1; u--) {
|
|
|
//枚举i邻接的所有的边,找出最大的状态转移
|
|
|
for (int i = hs[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
dist[j] = max(dist[j], dist[u] + w[i]);
|
|
|
}
|
|
|
}
|
|
|
int res = 0;
|
|
|
for (int i = 1; i <= scc_cnt; i++) res += (sz[i] * dist[i]);
|
|
|
printf("%d\n", res);
|
|
|
}
|
|
|
return 0;
|
|
|
} |