You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

89 lines
2.7 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include <bits/stdc++.h>
using namespace std;
const int N = 10010, M = 60010;
int dnt[N], low[N], id[N], sz[N], timestamp, scc_cnt;
int stk[N], top, in_stk[N];
int dist[N]; //记录强连通分量距离起点的距离
int n, m;
int h[N], hs[N], ne[M], e[M], w[M], idx; // hs[u]为强连通分量建的图的表头
void add(int h[], int a, int b, int c) {
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}
//有向图的Tarjan算法求强连通分量
void tarjan(int u) {
low[u] = dnt[u] = ++timestamp;
stk[++top] = u;
in_stk[u] = true;
for (int i = h[u]; ~i; i = ne[i]) {
int j = e[i];
if (!dnt[j]) {
tarjan(j);
low[u] = min(low[u], low[j]);
} else if (in_stk[j])
low[u] = min(low[u], dnt[j]);
}
if (low[u] == dnt[u]) {
int x;
++scc_cnt;
do {
x = stk[top--];
in_stk[x] = false;
id[x] = scc_cnt;
sz[scc_cnt]++;
} while (x != u);
}
}
int main() {
memset(h, -1, sizeof h);
memset(hs, -1, sizeof hs);
scanf("%d %d", &n, &m);
while (m--) {
int a, b;
scanf("%d %d", &a, &b);
add(h, b, a, 1); // b->边权为1的边->a
}
//超级源点0号点
for (int i = 1; i <= n; i++) add(h, 0, i, 100); // 0号点有一条边权100的边到i
// Tarjan算法求强连通分量(有向图)
for (int i = 0; i <= n; i++)
if (!dnt[i]) tarjan(i); //对于每个未访问过的点进行dfs,防止有孤立的点访问不到
if (scc_cnt != n + 1)
puts("Poor Xed");
else {
for (int u = 0; u <= n; ++u) {
for (int i = h[u]; ~i; i = ne[i]) {
int j = e[i];
int a = id[u], b = id[j];
if (a != b)
add(hs, a, b, w[i]); //建新图
}
}
dist[0] = 0;
//递推求出新建的图中的最长路(按照拓扑序来递推scc_cnt ~ 1这个顺序符合拓扑序)
// Tarjan算法本质是一个dfs算法得到的拓扑序是倒序的需要倒序枚举
//拓扑序Topsort本质是一个bfs算法得到的拓扑序是正序的需要正序枚举
for (int u = scc_cnt; u >= 1; u--) {
//枚举i邻接的所有的边找出最大的状态转移
for (int i = hs[u]; ~i; i = ne[i]) {
int j = e[i];
dist[j] = max(dist[j], dist[u] + w[i]);
}
}
int res = 0;
for (int i = 1; i <= scc_cnt; i++) res += (sz[i] * dist[i]);
printf("%d\n", res);
}
return 0;
}