|
|
## $HDU\ 1711\ Number\ Sequence$
|
|
|
|
|
|
**题目链接**
|
|
|
[$HDU$ $1711$ $Number$ $Sequence$](http://acm.hdu.edu.cn/showproblem.php?pid=1711)
|
|
|
|
|
|
### 一、题目描述
|
|
|
给一段长度为$n$的整数$s_1$以及相对较小长度为$m$的整数$s_2$,问在$s_1$中$s_2$第一个成功匹配的位置在哪?不存在输出$-1$。
|
|
|
|
|
|
### 二、前置知识
|
|
|
* [$Rabin$ $Karp$ 字符匹配算法](https://labuladong.gitee.io/algo/2/20/28/)
|
|
|
|
|
|
* [$Kmp$](https://labuladong.gitee.io/algo/3/28/97/)
|
|
|
|
|
|
### 三、$Rabin$ $Karp$模板
|
|
|

|
|
|
|
|
|
```c++
|
|
|
/*
|
|
|
Rabin_Karp:虽说用KMP更好,但是RK算法好理解。简单说一下RK算法的原理:首先把模式串的哈希值算出来,
|
|
|
在文本串里不断更新模式串的长度的哈希值,若相等,则找到了,否则整个模式串的长度的哈希值向右移动一位
|
|
|
*/
|
|
|
#include <bits/stdc++.h>
|
|
|
using namespace std;
|
|
|
|
|
|
typedef unsigned long long ULL;
|
|
|
const int N = 1e4 + 10;
|
|
|
const int M = 1e6 + 10;
|
|
|
const ULL KEY = 100000007;
|
|
|
int s[M], p[N];
|
|
|
int n, m;
|
|
|
|
|
|
int match() {
|
|
|
ULL h = 1;
|
|
|
for (int i = 0; i < n; i++) h *= KEY;
|
|
|
|
|
|
//对齐0~n-1
|
|
|
ULL ah = 0, bh = 0;
|
|
|
for (int i = 0; i < n; i++) ah = ah * KEY + s[i]; //模拟成KEY进制,然后利用ULL溢出的形式,相当于对2^64取模
|
|
|
for (int i = 0; i < n; i++) bh = bh * KEY + p[i];
|
|
|
|
|
|
//开始尝试匹配
|
|
|
for (int i = 0; i <= m - n; i++) {
|
|
|
if (ah == bh) return i + 1; //如果HASH值一致,则返回匹配位置,因本题要求数组下村从1开始,所以+1后返回
|
|
|
if (i < m - n) ah = ah * KEY + s[i + n] - s[i] * h; //怕越界,因为数据弱,不写if也能AC,但如果模式串最后一位是0,就狒狒了,原因看EXCEL
|
|
|
}
|
|
|
return -1;
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
int T;
|
|
|
scanf("%d", &T);
|
|
|
while (T--) {
|
|
|
scanf("%d%d", &m, &n);
|
|
|
for (int i = 0; i < m; i++) scanf("%d", &s[i]); //源串
|
|
|
for (int i = 0; i < n; i++) scanf("%d", &p[i]); //模式串
|
|
|
printf("%d\n", match());
|
|
|
}
|
|
|
return 0;
|
|
|
}
|
|
|
```
|
|
|
### 四、$Kmp$模板
|
|
|
```c++
|
|
|
#include "bits/stdc++.h"
|
|
|
using namespace std;
|
|
|
const int N = 100010, M = 1000010;
|
|
|
int n, m;
|
|
|
int ne[N];
|
|
|
|
|
|
// KMP算法的模板例题. 只不过需要换成int进行操作
|
|
|
int s[M], p[N]; // p串短用n,s串长用m,变量名称不要记忆错误
|
|
|
|
|
|
int main() {
|
|
|
int T;
|
|
|
scanf("%d", &T);
|
|
|
while (T--) {
|
|
|
scanf("%d %d", &m, &n);
|
|
|
for (int i = 1; i <= m; i++) scanf("%d", &s[i]); //原串
|
|
|
for (int i = 1; i <= n; i++) scanf("%d", &p[i]); //模式串
|
|
|
|
|
|
// 求NE数组
|
|
|
for (int i = 2, j = 0; i <= n; i++) {
|
|
|
while (j && p[i] != p[j + 1]) j = ne[j];
|
|
|
if (p[i] == p[j + 1]) j++;
|
|
|
ne[i] = j;
|
|
|
}
|
|
|
|
|
|
// KMP
|
|
|
bool flag = false;
|
|
|
for (int i = 1, j = 0; i <= m; i++) {
|
|
|
while (j && s[i] != p[j + 1]) j = ne[j];
|
|
|
if (s[i] == p[j + 1]) j++;
|
|
|
if (j == n) {
|
|
|
// 由于题目题目描述的数组下标从1开始,所以追加1
|
|
|
printf("%d\n", i - n + 1);
|
|
|
flag = true;
|
|
|
//防止多次匹配成功:本题要求输出第一个匹配,所以需要及时break,并且注释掉 j=ne[j]
|
|
|
break;
|
|
|
// j = ne[j];
|
|
|
}
|
|
|
}
|
|
|
//如果没有匹配成功,则输出-1
|
|
|
if (!flag) printf("%d\n", -1);
|
|
|
}
|
|
|
return 0;
|
|
|
}
|
|
|
``` |