|
|
#include <algorithm>
|
|
|
#include <cstdio>
|
|
|
#include <cmath>
|
|
|
#include <cstring>
|
|
|
|
|
|
using namespace std;
|
|
|
const int N = 1000010;
|
|
|
|
|
|
struct Node {
|
|
|
int l, r, v;
|
|
|
} tr[N << 5];
|
|
|
int root[N], idx;
|
|
|
int n, m, a[N];
|
|
|
|
|
|
//快读
|
|
|
int read() {
|
|
|
int x = 0, f = 1;
|
|
|
char ch = getchar();
|
|
|
while (ch < '0' || ch > '9') {
|
|
|
if (ch == '-') f = -1;
|
|
|
ch = getchar();
|
|
|
}
|
|
|
while (ch >= '0' && ch <= '9') {
|
|
|
x = (x << 3) + (x << 1) + (ch ^ 48);
|
|
|
ch = getchar();
|
|
|
}
|
|
|
return x * f;
|
|
|
}
|
|
|
|
|
|
// build的原因,是因为有初始值,版本0不是空的
|
|
|
void build(int &u, int l, int r) {
|
|
|
u = ++idx;
|
|
|
if (l == r) {
|
|
|
tr[u].v = a[l];
|
|
|
return;
|
|
|
}
|
|
|
int mid = (l + r) >> 1;
|
|
|
build(tr[u].l, l, mid);
|
|
|
build(tr[u].r, mid + 1, r);
|
|
|
}
|
|
|
|
|
|
void update(int &u, int l, int r, int x, int v) {
|
|
|
tr[++idx] = tr[u];
|
|
|
u = idx;
|
|
|
if (l == r) {
|
|
|
tr[idx].v = v;
|
|
|
return;
|
|
|
}
|
|
|
int mid = (l + r) >> 1;
|
|
|
if (mid >= x)
|
|
|
update(tr[u].l, l, mid, x, v);
|
|
|
else
|
|
|
update(tr[u].r, mid + 1, r, x, v);
|
|
|
}
|
|
|
|
|
|
int query(int u, int l, int r, int x) {
|
|
|
if (l == r) return tr[u].v;
|
|
|
int mid = (l + r) >> 1;
|
|
|
if (mid >= x)
|
|
|
return query(tr[u].l, l, mid, x);
|
|
|
else
|
|
|
return query(tr[u].r, mid + 1, r, x);
|
|
|
}
|
|
|
/*
|
|
|
答案:
|
|
|
59
|
|
|
87
|
|
|
41
|
|
|
87
|
|
|
88
|
|
|
46
|
|
|
*/
|
|
|
int main() {
|
|
|
//文件输入输出
|
|
|
#ifndef ONLINE_JUDGE
|
|
|
freopen("P3919.in", "r", stdin);
|
|
|
#endif
|
|
|
n = read(), m = read();
|
|
|
for (int i = 1; i <= n; i++) a[i] = read();
|
|
|
|
|
|
//构建主席树,因为有初始化值a[i]
|
|
|
build(root[0], 1, n);
|
|
|
|
|
|
for (int i = 1; i <= m; i++) {
|
|
|
int x = read(), op = read(), y = read();
|
|
|
if (op == 1) {
|
|
|
// op=1:修改 x这个版本,管辖范围[1,n],将a[y]的值,即y这个位置,修改为v
|
|
|
int v = read();
|
|
|
root[i] = root[x];
|
|
|
update(root[i], 1, n, y, v);
|
|
|
} else {
|
|
|
// op=2:访问版本x中,y这个位置上的值
|
|
|
root[i] = root[x];
|
|
|
printf("%d\n", query(root[i], 1, n, y));
|
|
|
}
|
|
|
}
|
|
|
return 0;
|
|
|
}
|