You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
8.3 KiB
8.3 KiB
一、题目大意
给一个序列, 两种操作, 一种是将[l, r]
里所有数升序排列, 一种是降序排列。
所有操作完了之后, 问你a[k]
等于多少。
二、解题思路
由于将一个普通序列排序很慢,需要nlogn
的时间,可以转化为对01
序列排序。
01
序列排序
二分+01
序列+中位数的一道引入例题:
AGC006D
Median
Pyramid
Hard
先考虑简单问题: 如何将一个01
序列排序? 算法复杂度:O(logn)

如上面这样一个01
序列,灰色为1
,白色为0
,只要查询出区间的和,将最后的这几个覆盖为1
,前面覆盖为0
(此为升序,降序同理), 即可完成排序。
使用线段树来维护
- 查询一段区间内的
1
的个数记为c
- 如果是降序(
1
在前,0
在后), 将[l,l+c−1]
更改为1
,将[l+c,r]
更改为0
- 如果是升序(
0
在前,1
在后), 将[l,r−cnt]
更改为0
, 将[r−c+1,r]
更改为1
单调性的证明和理解
如果把划定一个标准数mid
,同时,将大于等于mid
的设置为1
,小于mid
的设置为0
,那么 01
序列排序结果 对照 正常排序的结果,会发现:
- 正常排序结果大于
mid
的位置上,01
序列的排序结果都是1
- 正常排序结果小于
mid
的位置上,01
序列的排序结果都是0
- 如果
q
这个位置最终结果是5
,我们现在枚举的mid
是4
的话,则5>4
,所以,此位置最终是标识的1
,同时,还有余量,就是等于4
的也标识为了1
,也就是1
的数量标识多了 - 如果
q
这个位置最终结果是5
,我们现在枚举的mid
是5
的话,则5=5
,所以,此位置最终是标识的1
,整个结果中会有两个数字为1
,也就是正常排序5,6
所在的位置上是1
,q
这个位置上标识成了1
- 如果
q
这个位置最终结果是5
,我们现在枚举的mid
是6
的话,则于5<6
,所以,此位置最终是标识的0
,整个结果中只会有一个数字为1
,也就是正常排序6
所在的位置上是1
,q
这个位置上标识成了0
。 - 由于给定的数据是一个全排列,所以不断的判断区间,可以找出最终的准确解
时间复杂度
O(M\log^2n)
.(二分为O(\log_2n)
,每一次check
需要O(Mlogn)
三、实现代码
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
using namespace std;
const int N = 2e5 + 5;
int n, m, q;
//输入的指令序列
struct Sort {
int op, l, r;
} s[N];
int a[N]; //原始数组
struct Node {
int l, r;
int tag; // 0:升序 1:降序 2:初始值 lazy tag:懒标记 ,不想每次都做一遍,不查询不想做
int sum; //大于目标值的个数
} tr[N << 2];
//管辖区间长度
int len(int u) {
return tr[u].r - tr[u].l + 1;
}
//向父节点更新信息,写成Node &的方式目前看来是最合理的办法
void pushup(Node &c, Node &a, Node &b) {
c.sum = a.sum + b.sum;
}
//更新lazy tag标识
void pushdown(int u) {
if (tr[u].tag == 2) return; //如果没有下传标识,啥也不干
tr[u << 1].sum = len(u << 1) * tr[u].tag; //左儿子区间内所有数字都要加上tr[u].tag,sum值为累加
tr[u << 1 | 1].sum = len(u << 1 | 1) * tr[u].tag; //右儿子区间内所有数字都要加上tr[u].tag,sum值为累加
tr[u << 1].tag = tr[u << 1 | 1].tag = tr[u].tag; //左右儿子都修改标识为tag,一次只更新一层
tr[u].tag = 2; //标识已处理
}
//构建线段树,x:当前两分取到的值,用于建立线段树时判断每个叶子的初始值是1还是0
// a[l]>=x tr[u].sum=1
// a[l]<x tr[u].sum=0
// 本质上是记录了在区间内有多少个大于等于目标值的数字个数
void build(int u, int l, int r, int x) {
/*
① {l,r}为管控区间;
② 因为此时的操作运算有两种:0代表升序,1代表是降序,如果有这两个标识存在,都需要向下进行传递。
如果不是这两个标识,表示没有需要传递的操作,可是0和1都被占了,所以 tag=2,表示现在没有需要下传的标记
③ 默认的区间中比指定x大的数量还没有来的及计算,一会初始完或者更新完时,再通过pushup去更新,先写成0
*/
tr[u] = {l, r, 2, 0};
if (l == r) {
tr[u].sum = a[l] >= x; //大于等于x的都设置为1,小于x的设置为0
return;
}
//递归构建左右子树
int mid = (l + r) >> 1;
build(u << 1, l, mid, x), build(u << 1 | 1, mid + 1, r, x);
//向上更新统计信息
pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
//查询区间内数字1的个数
int query(int u, int l, int r) {
if (l > tr[u].r || r < tr[u].l) return 0; //不在范围内的返回0
if (l <= tr[u].l && r >= tr[u].r) return tr[u].sum; //整个区间命中,返回统计信息
// 分裂前要记得 lazy tag下传
pushdown(u);
//分裂查询 左儿子+右儿子
return query(u << 1, l, r) + query(u << 1 | 1, l, r);
}
//区间修改
void modify(int u, int l, int r, int c) {
if (l > r) return; //特判边界,防止越界
//如果命中区间,对区间的lazy tag和sum进行计算修改
if (l <= tr[u].l && r >= tr[u].r) {
tr[u].tag = c;
tr[u].sum = c * len(u);
return;
}
//没有命中区间,需要递归向左右儿子传递修改消息
pushdown(u);
//修改左区间
if (l <= tr[u << 1].r) modify(u << 1, l, r, c);
//修改右区间
if (r >= tr[u << 1 | 1].l) modify(u << 1 | 1, l, r, c);
//因为子区间内容修改,需要向父节点更新统计信息
pushup(tr[u], tr[u << 1], tr[u << 1 | 1]);
}
bool check(int x) {
build(1, 1, n, x); //每次全新构建线段树
for (int i = 1; i <= m; i++) { //枚举每个排序动作
int l = s[i].l, r = s[i].r, op = s[i].op; // 0:升序,1:降序
int c = query(1, l, r); //查询l,r之间数字1的个数,也是大于等于x的个数
//算法本质:忽略数字的正实值,只记录大小关系,大于等于记录为1,小于记录为0
if (op) //降序
modify(1, l, l + c - 1, 1), modify(1, l + c, r, 0); //比x大的个数是c个,如果是降序,[l,l+c-1]修改为1,表示区间都大于等于x,[l+c,r]修改为0,表示这区间小于x
else //升序
modify(1, l, r - c, 0), modify(1, r - c + 1, r, 1); //比x大的个数是c个,如果是升序,[l,r-c]修改为0,表示区间[l,r-c]都比x小,后面[r-c+1,r]都大于等于x
}
//按上面的操作序列要求,都模拟了一遍后,如果q这个位置上的数位是1,表示操作没有出现矛盾
return query(1, q, q) == 1;
}
int main() {
//加快读入
ios::sync_with_stdio(false), cin.tie(0);
cin >> n >> m;
for (int i = 1; i <= n; i++) cin >> a[i]; //第二行为 n 个整数,表示 1 到 n 的一个排列
for (int i = 1; i <= m; i++) cin >> s[i].op >> s[i].l >> s[i].r; //记录排序的动作与范围
cin >> q; //查询第q个位置上的数字是多少
int l = 1, r = n; //开始二分,因为原始序列的数字,是从[1,n]的不重复序列排列,所以有二分时上下限就是决定好的[1,n]
while (l <= r) {
int mid = (l + r) >> 1; //来尝试位置q上的数字是多大,假设为mid
if (check(mid)) //此位置的值大于等于mid
l = mid + 1; //那么继续尝试l=mid+1,看看结果向右半区间走,也就是再大一点是不是可以
else
r = mid - 1; //向左半区间走,看看再小一点是不是可以
}
printf("%d\n", l - 1);
return 0;
}