|
|
#include <algorithm>
|
|
|
#include <cstdio>
|
|
|
#include <cstring>
|
|
|
|
|
|
using namespace std;
|
|
|
const int N = 200010;
|
|
|
|
|
|
//快读
|
|
|
int read() {
|
|
|
int x = 0, f = 1;
|
|
|
char ch = getchar();
|
|
|
while (ch < '0' || ch > '9') {
|
|
|
if (ch == '-') f = -1;
|
|
|
ch = getchar();
|
|
|
}
|
|
|
while (ch >= '0' && ch <= '9') {
|
|
|
x = (x << 3) + (x << 1) + (ch ^ 48);
|
|
|
ch = getchar();
|
|
|
}
|
|
|
return x * f;
|
|
|
}
|
|
|
int n, m;
|
|
|
int a[N], b[N], bl; // b和bl是一组,用于离散化的数组,bl为b的数组中有用数字的个数,一般下标0不放东西
|
|
|
|
|
|
struct Node {
|
|
|
int l, r, cnt;
|
|
|
} tr[N << 5];
|
|
|
int root[N], idx;
|
|
|
|
|
|
//用于离散化的二分查找
|
|
|
int find(int x) {
|
|
|
return lower_bound(b + 1, b + 1 + bl, x) - b;
|
|
|
}
|
|
|
|
|
|
//经典的主席树插入
|
|
|
void insert(int &u, int l, int r, int x) {
|
|
|
tr[++idx] = tr[u]; //新开一个节点idx++,将新节点指向旧的tr[u]
|
|
|
tr[idx].cnt++; //新节点的cnt,因为多插入了一个数字,所以个数+1,这样处理的话,省去了pushup
|
|
|
u = idx; //因为是地址引用,需要回写u等于idx
|
|
|
|
|
|
if (l == r) return; //如果已经到了叶子节点,上面的操作就足够了,可以直接返回,否则需要继续向下递归
|
|
|
|
|
|
int mid = (l + r) >> 1;
|
|
|
if (x <= mid)
|
|
|
insert(tr[u].l, l, mid, x); //因为tr[u]进入本函数时,最先把旧的复制过来,所以tr[u].l也是上一个版本的左儿子节点
|
|
|
else
|
|
|
insert(tr[u].r, mid + 1, r, x);
|
|
|
}
|
|
|
// p:前面的版本,q:后面的版本,[l,r]:控制的范围
|
|
|
// k:要查找第k小的数字
|
|
|
int query(int p, int q, int l, int r, int k) {
|
|
|
if (l == r) return l;
|
|
|
int mid = (l + r) >> 1;
|
|
|
int cnt = tr[tr[q].l].cnt - tr[tr[p].l].cnt;
|
|
|
if (k <= cnt)
|
|
|
return query(tr[p].l, tr[q].l, l, mid, k);
|
|
|
else
|
|
|
return query(tr[p].r, tr[q].r, mid + 1, r, k - cnt);
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
n = read(), m = read();
|
|
|
for (int i = 1; i <= n; i++) a[i] = b[i] = read();
|
|
|
|
|
|
sort(b + 1, b + 1 + n);
|
|
|
bl = unique(b + 1, b + 1 + n) - b - 1;
|
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
root[i] = root[i - 1]; //开新版本号i,抄袭上一个版本i-1的根节点
|
|
|
insert(root[i], 1, bl, find(a[i])); //向版本i中增加find(a[i])的值
|
|
|
}
|
|
|
|
|
|
int k = 0;
|
|
|
for (int i = 1; i <= m; i++) {
|
|
|
int x = read();
|
|
|
printf("%d\n", b[query(root[0], root[x], 1, bl, ++k)]);
|
|
|
}
|
|
|
return 0;
|
|
|
}
|