|
|
##[$HDU5091$ $Beam$ $Cannon$](http://acm.hdu.edu.cn/showproblem.php?pid=5091)
|
|
|
|
|
|
### 一、题目大意
|
|
|
有$n$个点($n<=10000$),点的坐标绝对值不超过$20000$,然后问你用一个$w*h(1<=w,h<=40000)$的矩形,矩形的边平行于坐标轴,最多能盖住多少个点。
|
|
|
|
|
|
刘汝佳黑书上有原题
|
|
|
|
|
|
<center><img src='https://images0.cnblogs.com/blog2015/710860/201504/302330388653886.png'></center>
|
|
|
|
|
|
<center><img src='https://images0.cnblogs.com/blog2015/710860/201504/302330537712033.png'></center>
|
|
|
|
|
|
<center><img src='https://images0.cnblogs.com/blog2015/710860/201504/302331078335136.png'></center>
|
|
|
|
|
|
下面这份代码是加了离散化的,用垂直于$x$轴的直线去扫描,在$y$轴上建立线段树,所以对于每一个点$(x,y)$,赋予权值$1$,,然后增加一个新的负点$(x+w,y)$,赋予权值$-1$。当扫描线扫过每一个点,用该点的权值去区间更新线段树。维护每个区间的$sum$值,因为是区间更新,所以还要打个$lazy$标记。
|
|
|
|
|
|
### 二、实现代码
|
|
|
```cpp {.line-numbers}
|
|
|
#include <cstdio>
|
|
|
#include <cstring>
|
|
|
#include <algorithm>
|
|
|
#include <iostream>
|
|
|
#include <vector>
|
|
|
|
|
|
using namespace std;
|
|
|
const int N = 40010;
|
|
|
|
|
|
struct Node {
|
|
|
int l, r, lazy;
|
|
|
int maxc;
|
|
|
} tr[N << 2];
|
|
|
|
|
|
struct Seg {
|
|
|
int x, y1, y2, c;
|
|
|
bool operator<(const Seg &t) const {
|
|
|
if (x == t.x) return c > t.c;
|
|
|
return x < t.x;
|
|
|
}
|
|
|
} seg[N << 1];
|
|
|
|
|
|
void pushup(int u) {
|
|
|
tr[u].maxc = max(tr[u << 1].maxc, tr[u << 1 | 1].maxc);
|
|
|
}
|
|
|
|
|
|
void pushdown(int u) {
|
|
|
if (tr[u].lazy) {
|
|
|
tr[u << 1].lazy += tr[u].lazy;
|
|
|
tr[u << 1 | 1].lazy += tr[u].lazy;
|
|
|
tr[u << 1].maxc += tr[u].lazy;
|
|
|
tr[u << 1 | 1].maxc += tr[u].lazy;
|
|
|
tr[u].lazy = 0;
|
|
|
}
|
|
|
}
|
|
|
void build(int u, int l, int r) {
|
|
|
tr[u] = {l, r, 0, 0};
|
|
|
if (l == r) return;
|
|
|
int mid = (l + r) >> 1;
|
|
|
build(u << 1, l, mid);
|
|
|
build(u << 1 | 1, mid + 1, r);
|
|
|
}
|
|
|
|
|
|
void modify(int u, int l, int r, int v) {
|
|
|
if (l <= tr[u].l && tr[u].r <= r) {
|
|
|
tr[u].lazy += v;
|
|
|
tr[u].maxc += v;
|
|
|
return;
|
|
|
}
|
|
|
pushdown(u);
|
|
|
int mid = tr[u].l + tr[u].r >> 1;
|
|
|
if (l <= mid) modify(u << 1, l, r, v);
|
|
|
if (r > mid) modify(u << 1 | 1, l, r, v);
|
|
|
pushup(u);
|
|
|
}
|
|
|
|
|
|
//离散化数组
|
|
|
vector<int> ys;
|
|
|
|
|
|
int find(int x) {
|
|
|
return lower_bound(ys.begin(), ys.end(), x) - ys.begin();
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
//加快读入
|
|
|
ios::sync_with_stdio(false), cin.tie(0);
|
|
|
int n, w, h;
|
|
|
while (cin >> n && ~n) {
|
|
|
//多组数测数据
|
|
|
memset(tr, 0, sizeof tr);
|
|
|
ys.clear();
|
|
|
int idx = 0;
|
|
|
cin >> w >> h;
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
int x, y;
|
|
|
cin >> x >> y;
|
|
|
seg[++idx] = {x, y, y + h, 1};
|
|
|
seg[++idx] = {x + w, y, y + h, -1};
|
|
|
ys.push_back(y);
|
|
|
ys.push_back(y + h);
|
|
|
}
|
|
|
|
|
|
//对于边,按x由小到大,入边在前,出边在后排序
|
|
|
sort(seg + 1, seg + 1 + idx);
|
|
|
|
|
|
//离散化=排序+ 去重
|
|
|
sort(ys.begin(), ys.end());
|
|
|
ys.erase(unique(ys.begin(), ys.end()), ys.end());
|
|
|
|
|
|
//离散化似乎应该成为必要的步骤,这样记忆起来省的麻烦,都是一样的套路才方便记忆
|
|
|
build(1, 0, ys.size() - 1); // 0~ys.size()-1,共 ys.size()个,线段树是建立在y轴的投影上
|
|
|
|
|
|
int ans = 0;
|
|
|
for (int i = 1; i <= idx; i++) {
|
|
|
modify(1, find(seg[i].y1), find(seg[i].y2), seg[i].c);
|
|
|
ans = max(ans, tr[1].maxc);
|
|
|
}
|
|
|
printf("%d\n", ans);
|
|
|
}
|
|
|
return 0;
|
|
|
}
|
|
|
``` |