|
|
#include <bits/stdc++.h>
|
|
|
|
|
|
using namespace std;
|
|
|
const int N = 100010, M = 2000010; // 因为要建新图,两倍的边
|
|
|
int n, m; // 点数、边数
|
|
|
int dfn[N], low[N], ts;
|
|
|
int stk[N], top, in_stk[N];
|
|
|
int id[N], scc_cnt, sz[N];
|
|
|
int f[N];
|
|
|
int h[N], hs[N], e[M], ne[M], idx; // h: 原图;hs: 新图
|
|
|
void add(int h[], int a, int b) {
|
|
|
e[idx] = b, ne[idx] = h[a], h[a] = idx++;
|
|
|
}
|
|
|
int p[N]; //原图的点权
|
|
|
int q[N]; //新图的点权
|
|
|
|
|
|
// tarjan求强连通分量
|
|
|
void tarjan(int u) {
|
|
|
dfn[u] = low[u] = ++ts;
|
|
|
stk[++top] = u;
|
|
|
in_stk[u] = true;
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
if (!dfn[j]) {
|
|
|
tarjan(j);
|
|
|
low[u] = min(low[u], low[j]);
|
|
|
} else if (in_stk[j])
|
|
|
low[u] = min(low[u], dfn[j]);
|
|
|
}
|
|
|
if (dfn[u] == low[u]) {
|
|
|
++scc_cnt;
|
|
|
int x;
|
|
|
do {
|
|
|
x = stk[top--];
|
|
|
in_stk[x] = false;
|
|
|
id[x] = scc_cnt;
|
|
|
sz[scc_cnt]++;
|
|
|
// scc_cnt:强连通块的编号
|
|
|
q[scc_cnt] += p[x]; //叠加点权,生成连通块的总点权
|
|
|
} while (x != u);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
memset(h, -1, sizeof h); //原图
|
|
|
memset(hs, -1, sizeof hs); //新图
|
|
|
|
|
|
scanf("%d %d", &n, &m);
|
|
|
//读入点权
|
|
|
for (int i = 1; i <= n; i++) scanf("%d", &p[i]);
|
|
|
for (int i = 1; i <= m; i++) {
|
|
|
int a, b;
|
|
|
scanf("%d %d", &a, &b);
|
|
|
add(h, a, b);
|
|
|
}
|
|
|
//利用强连通分量,缩点,生成DAG
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
if (!dfn[i]) tarjan(i);
|
|
|
|
|
|
// (2) 缩点,建图
|
|
|
for (int u = 1; u <= n; u++)
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
int a = id[u], b = id[j];
|
|
|
if (a != b) //去重边
|
|
|
add(hs, a, b); //加入到新图
|
|
|
}
|
|
|
|
|
|
// (3) 根据拓扑序遍历DAG,从scc_cnt向前遍历自然满足拓扑序
|
|
|
for (int u = scc_cnt; u; u--) {
|
|
|
// base case 递推起点
|
|
|
if (!f[u]) f[u] = q[u];
|
|
|
|
|
|
for (int i = hs[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i]; // 边(i, j)
|
|
|
if (f[j] < f[u] + q[j]) f[j] = f[u] + q[j];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
// (4) 求解答案
|
|
|
int res = 0;
|
|
|
for (int i = 1; i <= scc_cnt; i++) res = max(res, f[i]);
|
|
|
|
|
|
//输出
|
|
|
printf("%d\n", res);
|
|
|
return 0;
|
|
|
}
|