|
|
#include <bits/stdc++.h>
|
|
|
using namespace std;
|
|
|
|
|
|
const int N = 110, M = 10010;
|
|
|
|
|
|
int n;
|
|
|
int dfn[N], low[N], ts;
|
|
|
int stk[N], top;
|
|
|
int in_stk[N];
|
|
|
int id[N], scc_cnt;
|
|
|
int din[N], dout[N];
|
|
|
|
|
|
// 链式前向星
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
}
|
|
|
|
|
|
// Tarjan算法求强连通分量
|
|
|
void tarjan(int u) {
|
|
|
dfn[u] = low[u] = ++ts;
|
|
|
stk[++top] = u;
|
|
|
in_stk[u] = 1;
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int v = e[i];
|
|
|
if (!dfn[v]) {
|
|
|
tarjan(v);
|
|
|
low[u] = min(low[u], low[v]);
|
|
|
} else if (in_stk[v])
|
|
|
low[u] = min(low[u], dfn[v]);
|
|
|
}
|
|
|
if (dfn[u] == low[u]) {
|
|
|
++scc_cnt;
|
|
|
int x;
|
|
|
do {
|
|
|
x = stk[top--];
|
|
|
in_stk[x] = 0;
|
|
|
id[x] = scc_cnt;
|
|
|
} while (x != u);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
scanf("%d", &n);
|
|
|
memset(h, -1, sizeof h);
|
|
|
|
|
|
for (int i = 1; i <= n; i++) {
|
|
|
int c;
|
|
|
while (scanf("%d", &c), c) add(i, c); // i支援t
|
|
|
}
|
|
|
|
|
|
for (int i = 1; i <= n; i++)
|
|
|
if (!dfn[i]) tarjan(i);
|
|
|
|
|
|
// 统计缩点后的DAG,此DAG中出度为0、入度为0的点的个数
|
|
|
for (int u = 1; u <= n; u++)
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int v = e[i];
|
|
|
int a = id[u], b = id[v];
|
|
|
if (a != b)
|
|
|
dout[a]++, din[b]++;
|
|
|
}
|
|
|
|
|
|
int a = 0, b = 0;
|
|
|
for (int i = 1; i <= scc_cnt; i++) {
|
|
|
if (!din[i]) a++; // 入度为0的强连通块
|
|
|
if (!dout[i]) b++; // 出度为0的强连通块
|
|
|
}
|
|
|
|
|
|
// 输出入度为0的连通块数量,也就是需要软件的数量
|
|
|
printf("%d\n", a);
|
|
|
|
|
|
if (scc_cnt == 1) // 如果只有一个强连通块,不用连边
|
|
|
puts("0");
|
|
|
else
|
|
|
printf("%d\n", max(a, b)); // 输出入度为0与出度为0的连通块最大值
|
|
|
return 0;
|
|
|
}
|