You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1.0 KiB

问题:13能否整除9^{36}-19^{39}-1?

费马小定理

假如p是质数,且gcd(a,p)=1,那么 \huge \displaystyle a^{p-1}≡1\ (mod \ p)

本题中,p=13,是质数。a=9,gcd(a,p)=1,满足费马小定理,所以利用其得到结论:

\large \displaystyle \because 9^{p-1}=9^{13-1}=9^{12}

\large \displaystyle \therefore 9^{12}\equiv 1 (mod \ 13)

\large \displaystyle \therefore (9^{12})^3\equiv 1 (mod \ 13)

\large \displaystyle \therefore 9^{36}\equiv 1 (mod \ 13)

也就是\large \displaystyle 13 | 9^{36} -1


再来看一下\large \displaystyle 9^{39}-1:

\large \displaystyle 9^{39}\equiv 9^{36} \times 9^3 (mod \ 13)

\large \displaystyle \because 9^{36} \equiv 1 (mod \ 13)

\large \displaystyle 9^3=729=(13 \times 56 +1)=1 (mod \ 13)

也就是\large \displaystyle 13 | 9^{39} -1

总结: 望文知义,看着像就往定理上套,这个思路很明显啊,王道!