You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.
## 初等数论--同余方程--二元一次不定方程的通解形式
* 不定方程:变量个数>方程个数
若二元一次不定方程$ax + by = n$有解,$x_0, y_0$为它的一组整数解,则通解为:
$$\large
\left\{\begin{matrix}
x=x_0 + \frac{b}{(a,b)} \cdot t\\
y=y_0-\frac{a}{(a,b)}\cdot t
\end{matrix}\right.
\ \ \ \ t \in Z
$$
证明:
* * *该形式确实是二元一次方程的解**
将$x,y$代入原方程,得:
$\large \displaystyle a(x_0+\frac{b}{(a,b)}\cdot t) + b(y_0-\frac{a}{(a,b)}\cdot t)$
$\large \displaystyle =ax_0+a\frac{b}{(a,b)}\cdot t + by_0-b\frac{a}{(a,b)}\cdot t$
$\large \displaystyle =ax_0+by_0$
$\large \displaystyle =n$
* **二元一次不定方程的解都可以表达成这种形式**
已知
$$\large
\left\{\begin{matrix}
ax+by=n
\\
ax_0+by_0=n
\end{matrix}\right.
$$
联立方程,相减得:
$$\large a(x-x_0)+b(y-y_0)=0$$
$$\large a(x-x_0)=-b(y-y_0)$$
$$\large \frac{a}{(a,b)}(x-x_0)=-\frac{b}{(a,b)}(y-y_0)$$
$$\large \because \frac{a}{(a,b)}\nmid \frac{b}{(a,b)}$$
且
$$\large \frac{b}{(a,b)} | \frac{a}{(a,b)}(x-x_0)$$
$$\large \therefore \frac{b}{(a,b)} | x-x_0$$
即
$$\large x-x_0=\frac{b}{(a,b)}\cdot t$$
同理,$\large \displaystyle \frac{a}{(a,b)}|y-y_0$,即
$$\large y-y_0=-\frac{a}{(a,b)}\cdot t$$
$$\huge Q.E.D$$