You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1.4 KiB
1.4 KiB
初等数论--同余方程--二元一次不定方程的通解形式
- 不定方程:变量个数>方程个数
若二元一次不定方程ax + by = n
有解,x_0, y_0
为它的一组整数解,则通解为:
\large
\left\{\begin{matrix}
x=x_0 + \frac{b}{(a,b)} \cdot t\\
y=y_0-\frac{a}{(a,b)}\cdot t
\end{matrix}\right.
\ \ \ \ t \in Z
证明:
-
该形式确实是二元一次方程的解 将
x,y
代入原方程,得:\large \displaystyle a(x_0+\frac{b}{(a,b)}\cdot t) + b(y_0-\frac{a}{(a,b)}\cdot t)
\large \displaystyle =ax_0+a\frac{b}{(a,b)}\cdot t + by_0-b\frac{a}{(a,b)}\cdot t
\large \displaystyle =ax_0+by_0
\large \displaystyle =n
-
二元一次不定方程的解都可以表达成这种形式 已知
\large \left\{\begin{matrix} ax+by=n \\ ax_0+by_0=n \end{matrix}\right.
联立方程,相减得:
\large a(x-x_0)+b(y-y_0)=0
\large a(x-x_0)=-b(y-y_0)
\large \frac{a}{(a,b)}(x-x_0)=-\frac{b}{(a,b)}(y-y_0)
\large \because \frac{a}{(a,b)}\nmid \frac{b}{(a,b)}
且
\large \frac{b}{(a,b)} | \frac{a}{(a,b)}(x-x_0)
\large \therefore \frac{b}{(a,b)} | x-x_0
即
\large x-x_0=\frac{b}{(a,b)}\cdot t
同理,
\large \displaystyle \frac{a}{(a,b)}|y-y_0
,即\large y-y_0=-\frac{a}{(a,b)}\cdot t
\huge Q.E.D