|
|
AcWing 1317. 树屋阶梯
|
|
|
[题目传送门](https://www.acwing.com/problem/content/description/1319/)
|
|
|
|
|
|
### 一、题目分析
|
|
|
考虑以阶梯左下角那个点为第一个钢材的左下角,那么第一个钢材摆放情况便如下图(以 $n = 5$ 为例)
|
|
|
|
|
|
<center><img src='https://img-blog.csdnimg.cn/8e09382d5838423fa239a81e00ab40f2.png?x-oss-process=image/watermark,type_ZHJvaWRzYW5zZmFsbGJhY2s,shadow_50,text_Q1NETiBAeWV6enou,size_20,color_FFFFFF,t_70,g_se,x_16'></center>
|
|
|
|
|
|
对每种情况分别讨论,那么问题都被分成了两个子问题,设$f[n]$表示摆放高度为$n$的台阶的方法数,那么:
|
|
|
$$\large f[5]=f[4]*f[0]+f[3]*f[1]+f[2]*f[2]+f[1]*f[3]+f[0]*f[4]=\sum_{k=1}^5f(5-k)*f(k-1)$$
|
|
|
|
|
|
泛化一下,就是:
|
|
|
$$\large f[n]=f[n-1]*f[0]+f[n-2]*f[1]+f[n-3]*f[2]+...+f[1]*f[3]+f[0]*f[n-1]=\sum_{k=1}^nf(n-k)*f(k-1)$$
|
|
|
|
|
|
显然,这就是**卡特兰数**了
|
|
|
|
|
|
但是这题很烦,还要用高精乘:
|
|
|
|
|
|
```c++
|
|
|
#include <bits/stdc++.h>
|
|
|
using namespace std;
|
|
|
|
|
|
const int N = 2010;
|
|
|
int primes[N], cnt;
|
|
|
bool st[N];
|
|
|
int a[N], b[N];
|
|
|
|
|
|
void get_primes(int n) {
|
|
|
for (int i = 2; i <= n; i++) {
|
|
|
if (!st[i]) primes[cnt++] = i;
|
|
|
for (int j = 0; primes[j] * i <= n; j++) {
|
|
|
st[i * primes[j]] = true;
|
|
|
if (i % primes[j] == 0) break;
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
|
|
|
int get(int n, int p) { // n!中p的次数
|
|
|
int s = 0;
|
|
|
while (n) n /= p, s += n;
|
|
|
return s;
|
|
|
}
|
|
|
|
|
|
void mul(int a[], int b, int &len) {
|
|
|
int t = 0;
|
|
|
for (int i = 1; i <= len; i++) {
|
|
|
t += a[i] * b;
|
|
|
a[i] = t % 10;
|
|
|
t /= 10;
|
|
|
}
|
|
|
while (t) {
|
|
|
a[++len] = t % 10;
|
|
|
t /= 10;
|
|
|
}
|
|
|
//去前导0
|
|
|
while (len > 1 && !a[len]) len--;
|
|
|
}
|
|
|
|
|
|
int C(int a, int b, int c[]) {
|
|
|
int len = 1;
|
|
|
c[1] = 1;
|
|
|
for (int i = 0; i < cnt; i++) {
|
|
|
int p = primes[i];
|
|
|
int s = get(a, p) - get(b, p) - get(a - b, p);
|
|
|
while (s--) mul(c, p, len);
|
|
|
}
|
|
|
return len;
|
|
|
}
|
|
|
|
|
|
void sub(int a[], int b[], int &len) {
|
|
|
int t = 0;
|
|
|
for (int i = 1; i <= len; i++) {
|
|
|
t = a[i] - b[i] - t;
|
|
|
a[i] = (t + 10) % 10;
|
|
|
t < 0 ? t = 1 : t = 0;
|
|
|
}
|
|
|
while (len > 1 && !a[len]) len--;
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
//加快读入
|
|
|
ios::sync_with_stdio(false);
|
|
|
cin.tie(0);
|
|
|
cout.tie(0);
|
|
|
|
|
|
get_primes(N - 10);
|
|
|
|
|
|
int n;
|
|
|
cin >> n;
|
|
|
int a1 = C(n + n, n, a);
|
|
|
int b1 = C(n + n, n - 1, b); // bl下面没有用到,原因是两数相减,我们知道a>b,按着a的长度来就行了
|
|
|
|
|
|
sub(a, b, a1);
|
|
|
|
|
|
for (int i = a1; i >= 1; i--) printf("%d", a[i]);
|
|
|
return 0;
|
|
|
}
|
|
|
```
|