|
|
#include <bits/stdc++.h>
|
|
|
using namespace std;
|
|
|
const int N = 3e5 + 10, M = N << 1;
|
|
|
int n, k;
|
|
|
//链式前向星
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
}
|
|
|
|
|
|
//树上差分模板题【点权】
|
|
|
int depth[N], f[N][25];
|
|
|
int dlt[N];
|
|
|
|
|
|
// 倍增2^k,计算k的办法
|
|
|
// T = log(n) / log(2) + 1;
|
|
|
const int T = 22;
|
|
|
|
|
|
//倍增求 a,b的最近公共祖先
|
|
|
void bfs(int root) {
|
|
|
queue<int> q;
|
|
|
q.push(root);
|
|
|
depth[root] = 1;
|
|
|
|
|
|
while (q.size()) {
|
|
|
int u = q.front();
|
|
|
q.pop();
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
if (depth[j]) continue;
|
|
|
depth[j] = depth[u] + 1;
|
|
|
f[j][0] = u;
|
|
|
for (int k = 1; k <= T; k++) f[j][k] = f[f[j][k - 1]][k - 1];
|
|
|
q.push(j);
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
int lca(int a, int b) {
|
|
|
if (depth[a] < depth[b]) swap(a, b);
|
|
|
for (int k = T; k >= 0; k--)
|
|
|
if (depth[f[a][k]] >= depth[b])
|
|
|
a = f[a][k];
|
|
|
|
|
|
if (a == b) return a;
|
|
|
for (int k = T; k >= 0; k--)
|
|
|
if (f[a][k] != f[b][k])
|
|
|
a = f[a][k], b = f[b][k];
|
|
|
|
|
|
return f[a][0];
|
|
|
}
|
|
|
|
|
|
//前缀和
|
|
|
void dfs(int u, int fa) {
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
if (j == fa) continue;
|
|
|
dfs(j, u);
|
|
|
//遍历完j后,dlt[j]已经被填充好,可以合并计算dlt[u]了
|
|
|
dlt[u] += dlt[j];
|
|
|
}
|
|
|
}
|
|
|
|
|
|
int main() {
|
|
|
memset(h, -1, sizeof h);
|
|
|
scanf("%d %d", &n, &k);
|
|
|
|
|
|
for (int i = 1; i < n; i++) { // n-1条边
|
|
|
int a, b;
|
|
|
scanf("%d %d", &a, &b);
|
|
|
add(a, b), add(b, a);
|
|
|
}
|
|
|
//预处理出lca需要的depth数组+f数组(倍增位置数组)
|
|
|
bfs(1);
|
|
|
|
|
|
// k条运输牛奶的路线
|
|
|
for (int i = 1; i <= k; i++) {
|
|
|
int a, b;
|
|
|
scanf("%d %d ", &a, &b);
|
|
|
int lc = lca(a, b);
|
|
|
//点差分
|
|
|
dlt[a]++;
|
|
|
dlt[b]++;
|
|
|
//提前就把1减出去了
|
|
|
dlt[lc]--;
|
|
|
dlt[f[lc][0]]--;
|
|
|
}
|
|
|
//利用前缀和合并差分,此时dlt数组的含义已经不是差分了,而是结果数组了
|
|
|
dfs(1, 0);
|
|
|
int res = 0; //找出结果数组中的最大值即是答案
|
|
|
for (int i = 1; i <= n; i++) res = max(res, dlt[i]);
|
|
|
printf("%d\n", res);
|
|
|
return 0;
|
|
|
} |