You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2.5 KiB

This file contains invisible Unicode characters!

This file contains invisible Unicode characters that may be processed differently from what appears below. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to reveal hidden characters.

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

##AcWing 871. 约数之和

一、题目描述

给定 n 个正整数 a_i,请你输出这些数的乘积的约数之和,答案对 10^9+7 取模。

输入格式 第一行包含整数 n

接下来 n 行,每行包含一个整数 a_i

输出格式 输出一个整数,表示所给正整数的乘积的约数之和,答案需对 10^9+7 取模。

数据范围 1≤n≤100,1≤a_i≤2×10^9

输入样例:

3
2
6
8

输出样例:

252

二、约数和定理

方法:

\LARGE  (p_1^0+p_1^1+…+p_1^{r_1})\times (p_2^0+p_2^1+…+p_2^{r_2}) \times…\times(p_k^0+p_k^1+…+p_k^{r_k})

360举例,求它的全部约数和:

\LARGE 360 =  2*2*2*3*3*5 =2^3 * 3^2 * 5^1

约数和就是:

\LARGE (2^0+2^1+2^2+2^3)*(3^0+3^1+3^2)*(5^0+5^1)  = \\
 \LARGE  (1+2+4+8)*(1+3+9)*(1+5)= \\ 
 \LARGE  15*13*6=1170$$

### 三、实现代码
```cpp {.line-numbers}
#include <bits/stdc++.h>

using namespace std;
#define int long long
typedef pair<int, int> PII;
const int N = 110;
const int MOD = 1e9 + 7;
unordered_map<int, int> primes;
int n;

signed main() {
    cin >> n;
    while (n--) {
        int x;
        cin >> x;
        for (int i = 2; i <= x / i; i++)
            while (x % i == 0) {
                x /= i;
                primes[i]++;
            }
        if (x > 1) primes[x]++;
    }

    int res = 1;
    for (auto p : primes) {
        int a = p.first, b = p.second; // 质数,几个
        int t = 1;
        while (b--) t = (t * a + 1) % MOD;
        res = res * t % MOD;
    }
    printf("%lld\n", res);
}
```

### 五、关键代码讲解
```cpp {.line-numbers}
 while (b--) t = (t * a + 1) % MOD;
```
这句话怎么理解?

<font color='red' size=6><b>结论: 每次都是上次运算结果$*a+1$</b></font>

原理:其实,对于每个质因子,是在计算:
$$\LARGE a^0+a^1+a^2+...+a^{k-1}+a^k= \sum_{i=0}^k a^i$$

这东西用代码怎么表示呢?
$$\LARGE \sum_{i=0}^k a^i= a^k+a^{k-1}+...+a^2+a^1+a^0 = \\
 \LARGE a^k+a^{k-1}+...+a^2+a^1+1 

按代码来逆向理解,核心思路:乘a+1 第一步:\LARGE t=1,t=(a+1) 第二步:\LARGE t=t*a+1=a*(a+1)+1=a^2+a+1 第三步:\LARGE t=t*a+1=a*(a^2+a+1)+1 =a^3+a^2+a+1

符合上面的运算逻辑,是正确的计算办法。

举栗子:

\large 3^0+3^1+3^2+3^3+3^4+3^5