You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

2.4 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

NC106112 Street Directions

一、题目描述

现在有一个联通的无向图,我们要把整个图改造为有向图,在保证强连通的情况下使得双向边尽可能少。

二、解题思路

  • ① 桥不能被改成单向边,因为会使得某一个方向断开
  • ② 除了桥之外的边会构成若干个双连通图,那么我们按照dfs 的顺序把这里面的边改成单向边,那么这个双连通图就会变成一个强连通图。

总结

  • 桥,输出两条边
  • 不是桥,输出一条边,成对变换的另一个不能输出需要标识

三、Code

#include <bits/stdc++.h>
using namespace std;

const int N = 1010, M = N << 2;

int ts;
int dfn[N], low[N];

// 链式前向星
int e[M], h[N], idx, w[M], ne[M];
void add(int a, int b, int c = 0) {
    e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}

int out[M]; // 是不是成对变换输出过
void tarjan(int u, int fa) {
    dfn[u] = low[u] = ++ts;
    for (int i = h[u]; ~i; i = ne[i]) {
        int v = e[i];
        if (v == fa) continue;

        if (out[i]) continue;    // 对边已经输出过那么这条反边不能输出。因为如果是割边的话两条边在u->v时就都已经输出完了
        out[i] = out[i ^ 1] = 1; // 标识成对变换输出过
        printf("%d %d\n", u, v); // 输出u->v,同时,需要检查 v->u是桥的话还输出v->u

        if (!dfn[v]) {
            tarjan(v, u);
            low[u] = min(low[u], low[v]);
            if (dfn[u] < low[v])         // 割边
                printf("%d %d\n", v, u); // 割边需要输出两条
        } else
            low[u] = min(low[u], dfn[v]);
    }
}

int main() {
#ifndef ONLINE_JUDGE
    freopen("UVA610.in", "r", stdin);
#endif
    int n, m, cas = 0;
    while (scanf("%d%d", &n, &m), n + m) {
        idx = ts = 0;
        memset(h, -1, sizeof h);
        memset(dfn, 0, sizeof(dfn));
        memset(low, 0, sizeof(low)); // Tips:有些人的代码low也是可以不用清空的
        memset(out, 0, sizeof out);

        while (m--) {
            int a, b;
            scanf("%d%d", &a, &b);
            add(a, b), add(b, a);
        }
        printf("%d\n\n", ++cas);
        for (int i = 1; i <= n; i++)
            if (!dfn[i]) tarjan(i, -1);
        puts("#");
    }
    return 0;
}