|
|
#include <bits/stdc++.h>
|
|
|
using namespace std;
|
|
|
const int N = 5e5 + 10, M = 4e6 + 10;
|
|
|
typedef pair<int, int> PII;
|
|
|
#define x first
|
|
|
#define y second
|
|
|
|
|
|
// 链式前向星
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
}
|
|
|
|
|
|
int dfn[N], low[N], ts, root;
|
|
|
set<PII> _set;
|
|
|
|
|
|
void tarjan(int u, int fa) {
|
|
|
dfn[u] = low[u] = ++ts;
|
|
|
|
|
|
// 对比有向图强连通分量的代码,这里没有入栈的操作,原因是本题只想求割边,并不是想缩点,
|
|
|
// 怀疑缩点时就需要加入stk,in_stk等操作了,待验证
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int v = e[i];
|
|
|
if (v == fa) continue;
|
|
|
if (!dfn[v]) {
|
|
|
tarjan(v, u);
|
|
|
low[u] = min(low[u], low[v]);
|
|
|
// 记录割边,论证过的结论
|
|
|
if (low[v] > dfn[u]) _set.insert({u, v}); // SET天生会排序,按first由小到大
|
|
|
} else
|
|
|
low[u] = min(low[u], dfn[v]);
|
|
|
}
|
|
|
}
|
|
|
|
|
|
int n, m;
|
|
|
int main() {
|
|
|
#ifndef ONLINE_JUDGE
|
|
|
freopen("P1656.in", "r", stdin);
|
|
|
#endif
|
|
|
memset(h, -1, sizeof h);
|
|
|
scanf("%d %d", &n, &m);
|
|
|
while (m--) {
|
|
|
int a, b;
|
|
|
scanf("%d %d", &a, &b);
|
|
|
if (a != b) add(a, b), add(b, a);
|
|
|
}
|
|
|
|
|
|
for (root = 1; root <= n; root++)
|
|
|
if (!dfn[root]) tarjan(root, -1);
|
|
|
|
|
|
for (auto i : _set) printf("%d %d\n", i.x, i.y);
|
|
|
return 0;
|
|
|
} |