|
|
#include <bits/stdc++.h>
|
|
|
using namespace std;
|
|
|
const int N = 5e5 + 10, M = 4e6 + 10;
|
|
|
|
|
|
//链式前向星
|
|
|
int e[M], h[N], idx, w[M], ne[M];
|
|
|
void add(int a, int b, int c = 0) {
|
|
|
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
|
|
|
}
|
|
|
|
|
|
//点双需要的变量
|
|
|
int dfn[N], low[N], stk[N], timestamp, top;
|
|
|
vector<int> bcc[N];
|
|
|
int bcnt;
|
|
|
|
|
|
//点双模板1 【推荐】
|
|
|
void tarjan(int u, int fa) {
|
|
|
low[u] = dfn[u] = ++timestamp;
|
|
|
stk[++top] = u;
|
|
|
int son = 0; //子节点个数
|
|
|
|
|
|
for (int i = h[u]; ~i; i = ne[i]) {
|
|
|
int j = e[i];
|
|
|
// if (j == fa) continue; //这句看似无用,dfn[j]可以包含,但事实证明,有些题会在后面加入其它代码造成执行逻辑错误,背模板时,加上这句保准!
|
|
|
if (!dfn[j]) {
|
|
|
son++; //找到一个子节点
|
|
|
tarjan(j, u);
|
|
|
low[u] = min(low[u], low[j]);
|
|
|
|
|
|
if (low[j] >= dfn[u]) {
|
|
|
int x;
|
|
|
bcnt++;
|
|
|
do {
|
|
|
x = stk[top--];
|
|
|
bcc[bcnt].push_back(x);
|
|
|
} while (x != j); //将子树出栈
|
|
|
bcc[bcnt].push_back(u); //把割点/树根也丢到点双里
|
|
|
}
|
|
|
} else
|
|
|
low[u] = min(low[u], dfn[j]);
|
|
|
}
|
|
|
//特判独立点
|
|
|
if (fa == -1 && son == 0) bcc[++bcnt].push_back(u);
|
|
|
}
|
|
|
|
|
|
int n, m;
|
|
|
|
|
|
int main() {
|
|
|
//文件输入输出
|
|
|
#ifndef ONLINE_JUDGE
|
|
|
freopen("P8435.in", "r", stdin);
|
|
|
#endif
|
|
|
|
|
|
//清空链式前向星
|
|
|
memset(h, -1, sizeof h);
|
|
|
scanf("%d %d", &n, &m);
|
|
|
while (m--) {
|
|
|
int a, b;
|
|
|
scanf("%d %d", &a, &b);
|
|
|
if (a != b) add(a, b), add(b, a); //此题目需要判断一下自环,否则1和11会挂
|
|
|
}
|
|
|
|
|
|
//给定一个n个点m条边的无向图,求该图中的所有点双连通分量(v-bcc)
|
|
|
for (int i = 1; i <= n; i++) //每个点做为根结点进行枚举
|
|
|
if (!dfn[i]) tarjan(i, -1);
|
|
|
|
|
|
printf("%d\n", bcnt);
|
|
|
for (int i = 1; i <= bcnt; i++) { //枚举每个双连通分量
|
|
|
printf("%d ", bcc[i].size());
|
|
|
for (int j = 0; j < bcc[i].size(); j++) //输出双连通分量中的点有哪些
|
|
|
printf("%d ", bcc[i][j]);
|
|
|
puts("");
|
|
|
}
|
|
|
return 0;
|
|
|
} |