You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

107 lines
3.1 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstring>
using namespace std;
//快读
int read() {
int x = 0, f = 1;
char ch = getchar();
while (ch < '0' || ch > '9') {
if (ch == '-') f = -1;
ch = getchar();
}
while (ch >= '0' && ch <= '9') {
x = (x << 3) + (x << 1) + (ch ^ 48);
ch = getchar();
}
return x * f;
}
const int N = 400010;
int n, m;
int a[N]; //维护的序列
int ans[N]; // 结果
struct Node {
// op=1 插入, op=-1 删除, op=2 查询
int op;
// 插入l:插入的值,用于二分与mid PK,r:位置
// 删除l:删除的值,用于二分与mid PK,r:位置
// 查询 [l,r]:查询范围
// k:第k小
int l, r, k;
int id;
} q[N], lq[N], rq[N];
//树状数组
int tr[N];
void add(int x, int c) {
for (; x < N; x += x & -x) tr[x] += c;
}
//查询x的个数和
int getSum(int x) {
int sum = 0;
for (; x; x -= x & -x) sum += tr[x];
return sum;
}
void solve(int l, int r, int ql, int qr) {
if (ql > qr) return; //防止RE递归边界
if (l == r) { //递归到叶子结点,找到答案
for (int i = ql; i <= qr; i++)
if (q[i].op == 2) ans[q[i].id] = l; //所有查询请求,标识答案
return;
}
int mid = (l + r) >> 1;
int nl = 0, nr = 0;
for (int i = ql; i <= qr; i++) {
if (q[i].op < 2) {
//插入、删除操作二分
if (q[i].l <= mid)
add(q[i].r, q[i].op), lq[++nl] = q[i]; //根据q[i].op的不同通过一样的add函数在位置q[i].r处完成插入+1删除-1的操作
else
rq[++nr] = q[i];
} else {
//查询数组二分
int t = getSum(q[i].r) - getSum(q[i].l - 1);
if (q[i].k <= t)
lq[++nl] = q[i];
else {
q[i].k -= t;
rq[++nr] = q[i];
}
}
}
// 有借有还,再借不难
for (int i = ql; i <= qr; i++)
if (q[i].op < 2)
if (q[i].l <= mid) add(q[i].r, -q[i].op);
for (int i = 1; i <= nl; i++) q[ql - 1 + i] = lq[i]; //将左儿子操作数组拷贝到q中原来的下标是[0~ql-1],现在无缝接上[ql-1+1~ql-1+nl]
for (int i = 1; i <= nr; i++) q[ql - 1 + nl + i] = rq[i]; //将右儿子操作数组拷贝到q中原来的下标是[ql-1+nl+i]
//继续二分左右儿子
solve(l, mid, ql, ql + nl - 1), solve(mid + 1, r, ql + nl, qr);
}
int main() {
int l, r, k, c = 0, qc = 0;
n = read(), qc = read();
for (int i = 1; i <= n; i++) a[i] = read(), q[++c] = {1, a[i], i}; // op=1:插入,a[i]:值i:位置
for (int i = 1; i <= qc; i++) {
l = read(), r = read(), k = read();
q[++c] = {2, l, r, k, i}; // op=2查询,[l,r]:查询范围,k:第k小,i:查询序号
}
//整体二分
solve(-1e9, 1e9, 1, c); //值域[-1e9,1e9],二分查询区间[1,n+m]
//结果
for (int i = 1; i <= qc; i++) printf("%d\n", ans[i]);
return 0;
}