20 KiB
背包问题
一、01
背包基础题
二维状态表示
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
const int M = 1010;
int n, m;
int w[N], v[N];
int f[N][M];
int main() {
cin >> m >> n;
for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
f[i][j] = f[i - 1][j]; // 不选
if (j >= v[i])
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]); // 选
}
printf("%d\n", f[n][m]);
return 0;
}
一维状态表示
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int n, m;
int v[N], w[N];
int f[N];
int main() {
cin >> m >> n;
for (int i = 1; i <= n; i++) cin >> v[i] >> w[i];
// 01背包模板
for (int i = 1; i <= n; i++)
for (int j = m; j >= v[i]; j--)
f[j] = max(f[j], f[j - v[i]] + w[i]);
printf("%d\n", f[m]);
return 0;
}
二、二维费用01
背包问题
#include <bits/stdc++.h>
using namespace std;
const int N = 110; // 野生小精灵的数量
const int M1 = 1010; // 小智的精灵球数量
const int M2 = 510; // 皮卡丘的体力值
int n, m1, m2;
int f[M1][M2]; // 一维:精灵球数量,二维:皮卡丘的体力值,值:抓到的小精灵数量最大值
int main() {
cin >> m1 >> m2 >> n;
m2--; // 留一滴血
// 二维费用01背包
// 降维需要将体积1、体积2倒序枚举
for (int i = 1; i <= n; i++) {
int v1, v2;
cin >> v1 >> v2;
for (int j = m1; j >= v1; j--)
for (int k = m2; k >= v2; k--)
f[j][k] = max(f[j][k], f[j - v1][k - v2] + 1); // 获利就是多了一个小精灵
}
// 最多收服多少个小精灵[在消耗精灵球、血极限的情况下,肯定抓的是最多的,这不废话吗]
printf("%d ", f[m1][m2]);
// 找到满足最大价值的所有状态里,第二维费用消耗最少的
int cost = m2;
for (int i = 0; i <= m2; i++) // 如果一个都不收服,则体力消耗最少,消耗值为0
if (f[m1][i] == f[m1][m2])
cost = min(cost, i);
// 收服最多个小精灵时皮卡丘的剩余体力值最大是多少
printf("%d\n", m2 + 1 - cost);
return 0;
}
总结
01
背包,还是背一维的形式比较好,一来代码更短,二来空间更省,倒序就完了。- 二维费用的
01
背包,简化版本的01
背包模板就有了用武之地,因为三维数组可能会爆内存。
AcWing
1020
. 潜水员
二维费用背包问题,但是是一道 反题,与正常题目相左的一道题。
人家是装不下就不再装了,它的含义是相反的:我还缺少多少,如果你给的多,那么直接把我装满~
老套路,二维好想,一维好记:
二维写法
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
const int M = 110;
int n, m, m1, m2;
int f[N][M][M];
int main() {
cin >> m1 >> m2 >> n;
memset(f, 0x3f, sizeof f);
f[0][0][0] = 0;
for (int i = 1; i <= n; i++) {
int v1, v2, w;
cin >> v1 >> v2 >> w;
for (int j = 0; j <= m1; j++)
for (int k = 0; k <= m2; k++) {
f[i][j][k] = f[i - 1][j][k];
f[i][j][k] = min(f[i - 1][j][k], f[i - 1][max(0, j - v1)][max(0, k - v2)] + w);
}
}
cout << f[n][m1][m2] << endl;
return 0;
}
一维写法
#include <bits/stdc++.h>
using namespace std;
const int N = 22, M = 80;
int n, m, K;
int f[N][M];
int main() {
cin >> n >> m >> K;
memset(f, 0x3f, sizeof f);
f[0][0] = 0;
while (K--) {
int v1, v2, w;
cin >> v1 >> v2 >> w;
for (int i = n; i >= 0; i--)
for (int j = m; j >= 0; j--)
f[i][j] = min(f[i][j], f[max(0, i - v1)][max(0, j - v2)] + w);
}
cout << f[n][m] << endl;
return 0;
}
三、01
背包之恰好装满
二维代码
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
const int M = 10010;
int n, m;
int v;
int f[N][M];
int main() {
cin >> n >> m;
for (int i = 0; i <= n; i++) f[i][0] = 1; // base case
for (int i = 1; i <= n; i++) {
cin >> v;
for (int j = 1; j <= m; j++) {
// 从前i-1个物品中选择,装满j这么大的空间,假设方案数是5个
// 那么,在前i个物品中选择,装满j这么大的空间,方案数最少也是5个
// 如果第i个物品,可以选择,那么可能使得最终的选择方案数增加
f[i][j] = f[i - 1][j];
// 增加多少呢?前序依赖是:f[i - 1][j - v]
if (j >= v) f[i][j] += f[i - 1][j - v];
}
}
// 输出结果
printf("%d\n", f[n][m]);
return 0;
}
一维代码
#include <bits/stdc++.h>
using namespace std;
const int N = 10010;
int n, m;
int v;
int f[N]; // 在前i个物品,体积是j的情况下,恰好装满的方案数
int main() {
cin >> n >> m;
// 体积恰好j, f[0]=1, 其余是0
f[0] = 1;
for (int i = 1; i <= n; i++) {
cin >> v;
for (int j = m; j >= v; j--)
f[j] += f[j - v];
}
printf("%d\n", f[m]);
return 0;
}
四、完全背包
二维写法
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int n, m;
int f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
int v, w;
cin >> v >> w;
for (int j = 1; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v)
f[i][j] = max(f[i][j], f[i][j - v] + w);
}
}
printf("%d\n", f[n][m]);
return 0;
}
一维解法
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int n, m;
int f[N];
// 完全背包问题
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
int v, w;
cin >> v >> w;
for (int j = v; j <= m; j++)
f[j] = max(f[j], f[j - v] + w);
}
printf("%d\n", f[m]);
return 0;
}
五、完全背包之恰好装满
二维数组
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int v[5] = {0, 10, 20, 50, 100};
int f[5][N];
int main() {
int m;
cin >> m;
// 前0种物品,体积是0的情况下只有一种方案
f[0][0] = 1;
for (int i = 1; i <= 4; i++)
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (v[i] <= j) f[i][j] += f[i][j - v[i]];
}
printf("%d\n", f[4][m]);
return 0;
}
一维数组
#include <bits/stdc++.h>
using namespace std;
const int N = 1010;
int v[5] = {0, 10, 20, 50, 100};
int f[N];
// 体积限制是恰好是,因此需要初始化f[0][0]为合法解1,其他位置为非法解0。
int main() {
int m;
cin >> m;
// 前0种物品,体积是0的情况下只有一种方案
f[0] = 1;
for (int i = 1; i <= 4; i++)
for (int j = v[i]; j <= m; j++)
f[j] += f[j - v[i]];
// 输出
printf("%d\n", f[m]);
return 0;
}
总结
① 完全背包的经典优化是哪个混蛋想出来的,真它娘的是个人才。
② 对比01
背包与完全背包的代码,发现是一正一反。
③ 完全背包求最大值与恰好装满的方案数,除了初始化不同,其它的一样。f[i][0]=1
这样的初始化,我也服了~
④ 背包问题这样的经典代码,除了理解算法原理,会推导外,重点还是模板背诵。用模板知识解决实际问题才是考试的本质,虽然考试不一定能选拔出能力强的人才,但能选拔出做过这方面训练的人员。
完全背包之恰好装满,只不过int
装不下,需要开long
long
,捎带着学习一下隔板法,应对一下高中数学组合数学。
十年OI
一场空,不开long
long
见祖宗。
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
const int N = 20;
const int M = 3010;
int n, m;
LL v[N];
LL f[M];
int main() {
cin >> n >> m;
f[0] = 1;
for (int i = 1; i <= n; i++) {
cin >> v[i];
for (int j = v[i]; j <= m; j++)
f[j] += f[j - v[i]];
}
printf("%lld\n", f[m]);
return 0;
}
总结
非常经典的NOIP
题目!一般都是需要自己挖掘一些性质,然后再用代码模板去解题,挖掘的性质一般靠经验去猜。
常见的套路包括:排序,按数对左端点排序啥的。
排序完成后,逐个遍历一下,看看这个数字能不能用它前面的数字表示出来(完全背包+恰好装满),如果能的话,说明这个数字可以扔掉,因为扔掉后依然可以靠比它小的构造出来,如果不能就必须保留下来,最终统计一下数字个数就行了。
本题最后一个细节:不能跑多次DP
,性能差,需要只跑一次DP
,可以使用求组成方案数,如果只有一种方案,即f[i]=1
表示i
只能用自己表示自己,就是需要保留的。
#include <bits/stdc++.h>
using namespace std;
const int N = 110; // N个正整数
const int M = 25010; // 表示的最大金额上限
int n; // 实际输入的正整数个数
int v[N]; // 每个输入的数字,也相当于占用的体积是多大
int f[M]; // 二维优化为一维的DP数组,f[i]:面额为i时的前序货币组成方案数
int main() {
int T;
cin >> T;
while (T--) {
// 每轮初始化一次dp数组,因为有多轮
memset(f, 0, sizeof f);
cin >> n;
for (int i = 0; i < n; i++) cin >> v[i];
// 每个货币的金额,都只能由比它小的货币组装而成,需要排一下序
sort(v, v + n);
// 背包容量
int m = v[n - 1];
// 在总金额是0的情况下,只有一种方案
f[0] = 1;
// 恰好装满:计算每个体积(面额)的组成方案
for (int i = 0; i < n; i++)
for (int j = v[i]; j <= m; j++)
f[j] += f[j - v[i]];
// 统计结果数
int res = 0;
for (int i = 0; i < n; i++)
// 如果当前面额的组成方案只有一种,那么它只能被用自己描述自己,不能让其它人描述自己
// 这个面额就必须保留
if (f[v[i]] == 1) res++;
// 输出结果
printf("%d\n", res);
}
return 0;
}
六、多重背包
数据范围
0<N,V≤100
0<v_i,w_i,s_i≤100
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
int n, m;
int f[N][N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) { // 讨论每个物品
int w, v, s;
cin >> v >> w >> s;
for (int j = 0; j <= m; j++) // 讨论每个剩余的体积
for (int k = 0; k <= s && v * k <= j; k++) // 讨论加入的个数
f[i][j] = max(f[i][j], f[i - 1][j - k * v] + w * k);
}
printf("%d\n", f[n][m]);
return 0;
}
数据范围
0<N≤1000
0<V≤2000
0<v_i,w_i,s_i≤2000
#include <bits/stdc++.h>
using namespace std;
const int N = 1010; // 个数上限
const int M = 2010; // 体积上限
int n, m, idx;
// 无法使用二维数组,原因是因为分拆后N*31*M=31*1010*2010太大了,MLE了
// 所以,需要使用滚动数组进行优化一下,思想还是二维的
int f[2][M];
struct Node {
int w, v;
} c[N * 31];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
int v, w, s;
cin >> v >> w >> s;
for (int j = 1; j <= s; j *= 2) { // 1,2,4,8,16,32,64,128,...打包
c[++idx] = {j * w, j * v};
s -= j;
}
// 不够下一个2^n时,独立成包
if (s) c[++idx] = {s * w, s * v};
}
// 按01背包跑就可以啦
for (int i = 1; i <= idx; i++)
for (int j = 1; j <= m; j++) {
f[i & 1][j] = f[i - 1 & 1][j];
if (j >= c[i].v)
f[i & 1][j] = max(f[i & 1][j], f[i - 1 & 1][j - c[i].v] + c[i].w);
}
// 输出
printf("%d\n", f[idx & 1][m]);
return 0;
}
数据范围
0<N≤1000
0<V≤20000
0<v_i,w_i,s_i≤20000
#include <bits/stdc++.h>
using namespace std;
const int N = 1010; // 物品种类上限
const int M = 20010; // 背包容量上限
int n, m;
int f[N][M]; // 前i个物品,在容量为j的限定下,最大的价值总和
int q[M]; // 单调优化的队列,M是背包容量上限,说明q[]里面保存的是体积
// 二维+队列[k-s*v,k],队列长s+1
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) { // 考虑前i种物品
int v, w, s; // 体积、价值、个数
cin >> v >> w >> s;
// 下面的j,k是一起用来描述剩余体积的,之所以划分成两层循环,是因为依赖的前序是按v为间隔的依赖,并且,是有个数限制的依赖
// j:按对体积取模分组:0表示剩余空间除以当前物品的体积余数是0
// k:分组内的每一个体积,注意:这里的体积不一定都是合法的,因为数量是有限制的
// 单调队列的意义:查找前面k-s*v范围内的价值的最大值,是一个单调递减的队列,队头保存的是获取到最大值的最近体积
for (int j = 0; j < v; j++) { // 按余数分组讨论
int hh = 0, tt = -1; // 全新的单调下降队列
for (int k = j; k <= m; k += v) { // 与j一起构成了有效体积
// 1、讨论到第i个物品时,由于它最多只有s个,所以有效的转移体积最小是k-s*v,更小的体积将被去除
if (hh <= tt && q[hh] < k - s * v) hh++;
// 2、处理队尾,下一个需要进入队列的是f[i-1][k],它是后来的,生命周期长,可以干死前面能力不如它的所有老头子,以保证一个单调递减的队列
while (hh <= tt && f[i - 1][q[tt]] + (k - q[tt]) / v * w <= f[i - 1][k]) tt--;
// 3、k入队列
q[++tt] = k;
// 4、队列维护完毕,f[i-1][k]已经进入队列,f[i][k]可以直接从队头取出区间最大值更新自己
f[i][k] = f[i - 1][q[hh]] + (k - q[hh]) / v * w;
}
}
}
printf("%d\n", f[n][m]);
return 0;
}
七、混合背包
- ① 将
01
背包看成是数量只有1
个的多重背包问题 - ② 完全背包也不是真正的无限个数,因为受背包容量的限制,它最多可以使用的个数是
s_i=m/v_i
个,也就转化为多重背包问题
使用多重背包问题的二进制优化统一处理即可
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5 + 10;
int n; // 物品种类
int m; // 背包容量
int f[N]; // dp数组
int idx;
struct Node {
int v, w;
} c[N * 31];
int main() {
cin >> n >> m;
// 二进制打包
for (int i = 1; i <= n; i++) {
// 体积,价值,个数
int v, w, s;
cin >> v >> w >> s;
// 根据题意做一些小的变形
if (s == -1)
s = 1; // 题目中s=-1表示只有1个
else if (s == 0)
s = m / v; // 完全背包(其实本质上就是多重背包):最多总体积/该物品体积向下取整
// 如果是其它大于0的数字,那么是多重背包
// 将完全背包和多重背包利用二进制优化转化为01背包
for (int j = 1; j <= s; j *= 2) {
c[++idx] = {j * v, j * w};
s -= j;
}
// 不够下一个2^n时,独立成包
if (s) c[++idx] = {s * v, s * w};
}
// 01背包
for (int i = 1; i <= idx; i++)
for (int j = m; j >= c[i].v; j--)
f[j] = max(f[j], f[j - c[i].v] + c[i].w);
// 输出
printf("%d\n", f[m]);
return 0;
}
八、分组背包
二维状态
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
int n, m;
int f[N][N], v[N][N], w[N][N], s[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> s[i]; // 第i个分组中物品个数
for (int j = 1; j <= s[i]; j++)
cin >> v[i][j] >> w[i][j]; // 第i个分组中物品的体积和价值
}
for (int i = 1; i <= n; i++) // 每组
for (int j = 0; j <= m; j++) { // 每个合法体积
f[i][j] = f[i - 1][j]; // 如果一个都不要,那么这一组就相当于白费,给你机会也不中用,继承于i-1
for (int k = 1; k <= s[i]; k++) // 选择第k个
if (j >= v[i][k])
f[i][j] = max(f[i][j], f[i - 1][j - v[i][k]] + w[i][k]); // 枚举每一个PK一下大小
}
// 输出打表结果
printf("%d", f[n][m]);
return 0;
}
一维状态
#include <bits/stdc++.h>
using namespace std;
const int N = 110;
int n, m;
int v[N][N], w[N][N], s[N];
int f[N];
int main() {
cin >> n >> m;
for (int i = 1; i <= n; i++) {
cin >> s[i];
for (int j = 1; j <= s[i]; j++)
cin >> v[i][j] >> w[i][j];
}
for (int i = 1; i <= n; i++)
for (int j = m; j >= 0; j--)
for (int k = 1; k <= s[i]; k++)
if (j >= v[i][k])
f[j] = max(f[j], f[j - v[i][k]] + w[i][k]);
printf("%d\n", f[m]);
return 0;
}
AcWing
1013
. 机器分配
分组背包求最优路径