You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

742 B

完全背包求方案数二维降一维的推导过程

设第i个物品的体积:v=w[i]

二维递推式 f[i][j] = f[i-1][j]+f[i-1][j-v]+f[i-1][j-2v]+...+f[i-1][j - (j/v) * v ]

尝试计算f[i][j-v]: f[i][j-v]= f[i-1][j-v]+f[i-1][j-2v]+...+f[i-1][(j-v) - (j-v)/v * v ]

化简与等价变型 (j-v) - (j-v)/v * v = j-v -(j/v)*v+v= j - (j/ v)*v

\therefore f[i][j-v]= f[i-1][j-v]+f[i-1][j-2v]+...+f[i-1][ j - (j/ v)*v]

将②代入①得: f[i][j] = f[i-1][j]+f[i][j-v]

根据01背包优化的经验,我们知道从小到大去填充的话,就可以去掉第一维

f[j]=f[j]+f[j-v]

f[j]+=f[j-w[i]]