You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.
### 韦达定理

### 练习题一

** 解题过程**:
直接求解一元二次方程?不行的,因为方程里面除了$x$外,还有一个$a$,没法直接解的。
从方程的两个根$x_1,x_2$看的出来,可以使用韦达定理。
$$
\large \left\{\begin{matrix}
x_1+x_2=-\frac{b}{a}& =1-3a \\
x_1 x_2=\frac{c}{a}& =2a^2-1
\end{matrix}\right.
$$
目标式:$(3x_1-x_2)(x_1-3x_2)=3x_1^2-10 x_1 x_2+3x_2^2=3(x_1^2+x_2^2)-10x_1x_2$
为了能转化为$x_1+x_2$的形式,需要进行一下配方:
$=3(x_1^2+2x_1x_2+x_2^2-2x_1x_2)-10x_1x_2$
$=3(x_1+x_2)^2-16x_1x_2$
$=3(1-3a)^2-16(2a^2-1)$
$=3(1-6a+9a^2)-32a^2+16$
$=3-18a+27a^2-32a^2+16$
$-5a^2-18a+19=-80$
$5a^2+18a-19=80$
$5a^2+18a-99=0$
转化为一元二次方程形式,根据求根公式,计算
$a=\frac{-18 \pm \sqrt{18^2+4*5*99}}{2\times 5}$
$a=\frac{-18 \pm 48}{10}$
$\therefore a_1=-6.6,a_2=3$
** 易错点**
因为使用了求根公式,能够得到实数根的前提是方程有实数根,即要求$\triangle=b^2-4ac>=0$
验证一下两个根:
计算$\triangle=b^2-4ac=(3a-1)^2- 4 \times (2a^2-1)$
- $a_1=3$代入,$\triangle=8^2-4\times 17=-4< 0 $ ,此解需要舍去
- $ a_2 = -6.6$代入,$20.8^2-4 \times ( -2 * 6 . 6 * 6 . 6-1 ) > 0$
所以,最终的答案只有$a=-6.6$