You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1.2 KiB

有公共端点的三条线段,方法就是找出两条线段所在三角形做60^{\circ}旋转。 如下图:

\because \triangle AB'P' \cong \triangle ABP \therefore \angle PAP'=60 ^{\circ},AP=AP' \therefore \triangle AP'P是等边三角形

\therefore AP=PP' 问题中要求解的AP+BP+PC也就成功转化为

PP'+B'P'+PC

通过图形可知,图中B'C就是三点共线时的最小值!

下面开始求解B'C长度。 求边形一般用勾股定理,构造直角三角形:从B'BC边引垂线,交BC延长线于H\because \triangle AB'B是等边三角形 AB=B'B=2 可以理解为旋转了60^{\circ}

\because \angle ABB'=60 ^{\circ} \therefore \angle B'BH=30^{\circ} \therefore B'H=1,BH=\sqrt{3}

\therefore B'C=\sqrt{(\sqrt{3}+2)^2+1^2}=\sqrt{8+4\sqrt{3}}

复合二次根式 需要用配方法化简:

=\sqrt{8+2\sqrt{12}}=\sqrt{\sqrt{6}^2+2\sqrt{12}+\sqrt{2}^2}=\sqrt{(\sqrt{6}+\sqrt{2})^2}=\sqrt{6}+\sqrt{2}