You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

68 lines
2.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/7c13ce5c8f3ad63ffaca1fa40b11a027.png)
将$\triangle AFD$ 旋转到$ABF'$,因为$\angle D=90^{\circ}$,所以$F',B,E,C$共线。
因为是旋转得到$\triangle AF'B$,所以$\triangle AF'B \cong ADF$
所以$DF=BF',\angle DAF=\angle BAF'$
双因为$\angle BAE +\angle FAD=45^{\circ}$
所以$\angle F'AB+\angle BAE=\angle F'AE=45^{\circ}$
$AF'=AF,\angle F'AE=\angle EAF,AE=AE$ 根据$ASA$,所以$\triangle F'AE \cong \triangle EAF$ ①**证毕**
$BE+DF=BE+BF'$ 旋转得到
$BE+BF'=EF$ ②**证毕**
$EF=EF'=BE+BF'=BE+FD$
$\therefore C_{\triangle CEF}=CE+CF+EF=CE+CF+BE+FD=BC+CD=2AB$ ③**证毕**
----
![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/62ce83ec2da1b52054ff4b35227eeca3.png)
因为$\triangle AF'E \cong \triangle AEF$
$\therefore \angle 1=\angle 2$
$\therefore \triangle BAE \cong EAH$ ⑥**证毕**
$\therefore \angle 3=\angle 4$
因此$AE$是$\angle BAH$平分线,④**证毕**
**求证**$\angle 5=\angle 7$
$\because \angle 4+\angle 5=45^{\circ}$
$\because \angle 3=\angle 4$
$\therefore \angle 3+ \angle 5=45^{\circ}$
$\because \angle 7 + \angle 3=90^{\circ}-\angle EAF=90^{\circ}-45^{\circ}=45^{\circ}$
$\therefore \angle 5=\angle 7$
所以,$AF$是$\angle HAD$平分线,⑤**证毕**
$\therefore \triangle ADF \cong \triangle AHF$
**证毕**
---
![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/02/6814e9b5e0190de95225741ae64e7b1a.png)
求证:$MA=MF$
因为$\angle 1=\angle 2$ 已经证明的全等三角形
$\angle 1=\angle 8$ 平行边内错角相等
$\therefore \angle 2=\angle 8$
$\triangle ANE$是等腰三角形,$AN=NE$ ⑨ **证毕**
$\because \triangle AHF \cong \triangle ADF$
$\therefore \angle HFA=\angle 9$
$\because \angle 9=\angle MAF$ 平行线内错角相等
$\therefore \angle HFA=\angle MAF$
所以$\triangle MAF$是一个等腰三角形
$\therefore MF=MA$ ⑧**证比**
⑩ 一看就是 $12345$模型了,因为$tan \alpha=\frac{1}{2},\alpha+\beta=45^{\circ}$
$\therefore tan \beta=\frac{1}{3}$
**证毕**,忘记怎么证明的时候,回去复习一下 $12345$模型即可。