You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
python/数学课程/【2021苏州中考压轴题】圆综合+线段的乘积.md

1.7 KiB

一、第一问

\because 圆中同弧所对的圆周角相等 \therefore \angle AED=\angle ABD

连接AD, \because \angle ADB是直径AB所对的圆周角,\therefore \angle ADB=90^{\circ}\because DBC中点,所以\triangle ADB \cong \triangle ADC \therefore \angle ABD = \angle ACB

联立 ① ②, \therefore \angle AED=\angle C

二、第二问

\because \angle AED=55^{\circ} \therefore \angle ABC=\angle C=55^{\circ} \therefore \angle BAC=180^{\circ}-55^{\circ}-55^{\circ}=70^{\circ} 根据 圆的内接四边形对角互补,\therefore \angle BDF=110^{\circ}

三、第三问

看到线段乘积,考虑找到相似三角形

\large \frac{EG}{?}=\frac{?}{ED}

考虑\triangle EAG \sim \triangle EAD

如何证明呢? 有一个公共角\angle AED 还需要再找一个角: 因为E\overset{{\frown}}{AB} 的中点, \therefore \angle ADE=\angle BAE

\therefore \triangle EAG \sim \triangle EAD

\large \frac{EG}{AE}=\frac{AE}{ED}

\Rightarrow EG*ED=AE^2

AE长度如何求解呢? \because \angle AFD+\angle ABD=180^{\circ} \because \angle AFD+\angle CFD=180^{\circ} \therefore \angle ABD=\angle CFD 因为有第一问的结论,所以\triangle DCF是等腰三角形,CD=DF=BD=4

\because cos\angle ABD=\frac{2}{3} \large \therefore \frac{BD}{AB}=\frac{2}{3} \therefore AB=6

\because \triangle ABE是等腰直角三角形 \therefore AE=3\sqrt{2}

\therefore EG*ED=(3\sqrt{2})^2=18