You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
python/数学课程/【相似三角形】相似三角形两大模型.md

1.2 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

前导知识:一线三等角模型

分析题意 \because \angle ADC=45^{\circ}+\angle 1 \because \angle ADC=45^{\circ}+\angle 2 \therefore \angle 1=\angle 2

此时,构造相似三角形,通过比例关系解题就是 关键 因为\angle 1\triangle EDC中,同时知道EC长度为\sqrt{5},我们需要构造出一个和 \triangle ABD相似的三角形,所以过EEFCDF,使得\angle EFD=45^{\circ}\triangle EDF \sim \triangle ABD \therefore \frac{AD}{AB}=\frac{DE}{FD} \because DE=\sqrt{2} AD \therefore FD=\sqrt{2}AB=\sqrt{2}*2\sqrt{2}=4 算出DF后,下面需要继续求解FC,才能算出CD的长度。

继续观察发现,


\left\{\begin{matrix}
\angle C=\angle C & \\ 
\angle CFE=135^{\circ} & \\
\angle CDE=135^{\circ} & 
\end{matrix}\right.

\therefore \triangle CEF \sim \triangle CDECF=x \therefore \frac{x}{CE}=\frac{CE}{CD} x^2+4x=5 解方程:x_1=1,x_2=-5,因为x>0,x_2=-5舍掉,最终x=1,所以CD=4+1=5