You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
python/数学课程/【存在性问题.】直角三角形.md

68 lines
1.8 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/03/28a879c61842a85b28458c67fa00afc9.png)
(1) 将三个点代入二次函数,得到一个二元一次方程组,求解即可求出$b,c$
$$
\large \left\{\begin{matrix}
0=-1-b+c & \\
3=-4+2b+c & \\
\end{matrix}\right.
$$
$\therefore a=-1,b=2,c=3,方程y=-x^2+2x+3$
交$y$轴于点$C$,则$x=0,y=3$ $\therefore C坐标(0,3)$
$D$点坐标可求:
$x_d=-\frac{b}{2a}=\frac{2}{2}=1,y_d=\frac{4ac-b^2}{4a}=4$
$AB$的直线方程也很好求:
$y=kx+b$
$$
\large \left\{\begin{matrix}
0=-k+b& \\
3=2k+b&
\end{matrix}\right.
$$
$\therefore k=1,b=1,y=x+1$
---
**重点是第二问**
由于没有说明$A,C,M$哪个顶点是直角顶点,需要分类讨论:
- $A$是直角顶点
此时,过$A$点引$AC$的垂线
- $C$是直角顶点
此时,过$C$点引$AC$的垂线
- $M$是直角顶点
此时,以$AC$为直径画圆,此圆与$y$轴有两个交点
#### 几何法
1. $AM_1$需要做相似三角形,通过比例关系来求解
$\triangle AM_1F \sim \triangle CEA$
$\frac{CE}{AF}=\frac{AE}{M_1F}$
$1/m=3/2$ $\Rightarrow m=\frac{2}{3}$
$\therefore M1(1,-\frac{2}{3})$
2. ![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/03/033522339a7eab82b8a64f7bf4c5bcb5.png)
#### 代数法
![](http://dsideal.obs.cn-north-1.myhuaweicloud.com/HuangHai/BlogImages/2023/03/a25afe0a6095da3b947907d0a9f97b9e.png)
- 当$A$为直角顶点时:
$AC^2+AM^2=CM^2$
$10+t^2+4=t^2-6t+10$
$t=-\frac{2}{3}$
$\therefore M(1,-\frac{2}{3})$
- 当$C$为直角顶点时:
$AC^2+CM^2=AM^2$
$10+t^2-6t+10=t^2+4$
$t=\frac{8}{3}$
$\therefore M(1,\frac{8}{3})$
- 当$M$为直角顶点时:
$AC^2=AM^2+CM^2$
$10=t^2+4+t^2-6t+10$
$t^2-3t+2=0$
$t=2,t=1$
$\therefore M(1,2)$ 或 $M(1,1)$