You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
50 lines
1.2 KiB
50 lines
1.2 KiB

|
|
|
|
- 两个函数的交点坐标 = 联立两个表达式得到的方程的解
|
|
- 根据几何办法,求得$B$坐标$(-8,0)$,同时,由于$AB=AO$,在等腰三角形中,根据三线合一的结论,得到$AH\perp BO$,由$AH$为$BO$边中垂线,$BH=HO$,所以$A$点横坐标就是$(-4)$
|
|
|
|
- $A$点的纵坐标呢?根据$S_{\triangle ABO}=12=1/2*AH*BO=4*AH$
|
|
$\therefore AH=3$,$A$点坐标就是$(-4,3)$
|
|
|
|
也就是方程
|
|
$$
|
|
\large \left\{\begin{matrix}
|
|
y=ax+b & \\
|
|
y=kx & ①
|
|
\end{matrix}\right.
|
|
$$ 的解
|
|
|
|
|
|
$$
|
|
\large \left\{\begin{matrix}
|
|
x=-4 & \\
|
|
y=3 &
|
|
\end{matrix}\right.
|
|
$$
|
|
|
|
现在看看它要问什么:
|
|
|
|
$$
|
|
\large \left\{\begin{matrix}
|
|
y-ax-b=2 & \\
|
|
y-kx=2 &
|
|
\end{matrix}\right.
|
|
$$
|
|
|
|
把它作一个简单变形:
|
|
$$
|
|
\large \left\{\begin{matrix}
|
|
y=ax+b+2 & \\
|
|
y=kx+2 & ②
|
|
\end{matrix}\right.
|
|
$$
|
|
|
|
观察 ① 和 ②,
|
|
有两种思考方法:
|
|
|
|
- 视$y-2=ax+b$,$y-2=kx$
|
|
也就是$y-2=3$
|
|
$\therefore$ $x=-4,y=5$
|
|
|
|
- **左加右减自变量,上加下减常数项**
|
|
可以认为是方程组向上平移两个单位得到,方程的解就是$x=-4,y=5$ |