# 背包问题(二维求法)
## 求方案数
- 体积至多$j$
- 初始:$f[0][i]=1$,$0<=i<=m$,其余为$0$
- $01$背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] += f[i - 1][j - v];
}
```
- 完全背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] += f[i][j - v];
}
```
- 体积恰好$j$
- 初始:$f[i][0]=1$,$0<=i<=n$,其余为$0$
- $01$背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] += f[i - 1][j - v];
}
```
- 完全背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] += f[i][j - v];
}
```
- 体积至少$j$
- 初始:$f[0][0]=1$,其余为$0$
- $01$背包
-
```c++
for (int j = 0; j <= m; j++)
f[i][j] = f[i - 1][j] + f[i - 1][max(0, j - v)];
```
- 完全背包代码
-
有无穷多组方案数,不这么问
## 求最大/小值
- 体积至多$j$
- 初始:$f[i,j]=0,0 <= i <= n, 0 <= j <= m$
- $01$背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] = max(f[i][j], f[i - 1][j - v] + w);
}
```
- 完全背包
-
```c++
for (int j = 1; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] = max(f[i][j], f[i][j - v] + w);
}
```
- 体积恰好$j$
- 求最小值
- 初始化$f[0][0]=0$,其它是$INF$
- 01 背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] = min(f[i][j], f[i - 1][j - v] + w);
}
```
- 完全背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] = min(f[i][j], f[i][j - v] + w);
}
```
- 求最大值
- 初始化$f[0][0]=0$, 其余是$−INF$
- 01背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] = max(f[i][j], f[i - 1][j - v] + w);
}
```
- 完全背包
-
```c++
for (int j = 0; j <= m; j++) {
f[i][j] = f[i - 1][j];
if (j >= v) f[i][j] = max(f[i][j], f[i][j - v] + w);
}
```
- 体积至少$j$
- 求最小值
- 初始化$f[0][0]=0$, 其余是$INF$
- 01背包
-
```c++
for (int j = 0; j <= m; j++)
f[i][j] = min(f[i - 1][j], f[i - 1][max(0, j - v)] + w);
```
- 完全背包
-
```c++
for (int j = 0; j <= m; j++)
f[i][j] = min(f[i - 1][j], f[i][max(0, j - v)] + w);
```
- 求最大值
- 没有求最大值的