### 完全背包求方案数二维降一维的推导过程
设第$i$个物品的体积:$v=w[i]$
二维递推式
$f[i][j] = f[i-1][j]+$$f[i-1][j-v]+f[i-1][j-2v]+...+f[i-1][j - (j/v) * v ]$ ①
尝试计算$f[i][j-v]$:
$f[i][j-v]= f[i-1][j-v]+f[i-1][j-2v]+...+f[i-1][(j-v) - (j-v)/v * v ]$
化简与等价变型
$(j-v) - (j-v)/v * v = j-v -(j/v)*v+v= j - (j/ v)*v$
$\therefore f[i][j-v]= $$f[i-1][j-v]+f[i-1][j-2v]+...+f[i-1][ j - (j/ v)*v]$ ②
将②代入①得:
$f[i][j] = f[i-1][j]+f[i][j-v]$
根据$01$背包优化的经验,我们知道从小到大去填充的话,就可以去掉第一维
得$f[j]=f[j]+f[j-v]$
即 $f[j]+=f[j-w[i]]$